메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes

Author keywords

[No Author keywords available]

Indexed keywords

COLONY STIMULATING FACTOR 1; GAMMA INTERFERON; INTERFERON CONSENSUS SEQUENCE BINDING PROTEIN; HEAT SHOCK PROTEIN; INTERFERON REGULATORY FACTOR; LIGAND; SIGNAL TRANSDUCING ADAPTOR PROTEIN; SQSTM1 PROTEIN, MOUSE; UBIQUITIN;

EID: 84928568291     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms7379     Document Type: Article
Times cited : (62)

References (47)
  • 1
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He, C. & Klionsky, D. J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93 (2009).
    • (2009) Annu. Rev. Genet. , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 3
    • 67549139899 scopus 로고    scopus 로고
    • Toll-like receptors in control of immunological autophagy
    • Delgado, M. A. & Deretic, V. Toll-like receptors in control of immunological autophagy. Cell Death Differ. 16, 976-983 (2009).
    • (2009) Cell Death Differ , vol.16 , pp. 976-983
    • Delgado, M.A.1    Deretic, V.2
  • 4
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323-335 (2011).
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 5
    • 84863610034 scopus 로고    scopus 로고
    • IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway
    • Matsuzawa, T. et al. IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway. J. Immunol. 189, 813-818 (2012).
    • (2012) J. Immunol. , vol.189 , pp. 813-818
    • Matsuzawa, T.1
  • 6
    • 84881547839 scopus 로고    scopus 로고
    • Autophagy as an immune effector against tuberculosis
    • Bradfute, S. B. et al. Autophagy as an immune effector against tuberculosis. Curr. Opin. Microbiol. 16, 355-365 (2013).
    • (2013) Curr. Opin. Microbiol. , vol.16 , pp. 355-365
    • Bradfute, S.B.1
  • 7
    • 84869217908 scopus 로고    scopus 로고
    • Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
    • Castillo, E. F. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl Acad. Sci. USA 109, 3168-3176 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 3168-3176
    • Castillo, E.F.1
  • 8
    • 84870861513 scopus 로고    scopus 로고
    • Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes
    • Henault, J. et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37, 986-997 (2012).
    • (2012) Immunity , vol.37 , pp. 986-997
    • Henault, J.1
  • 9
    • 76949091325 scopus 로고    scopus 로고
    • In vivo requirement for Atg5 in antigen presentation by dendritic cells
    • Lee, H. K. et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227-239 (2010).
    • (2010) Immunity , vol.32 , pp. 227-239
    • Lee, H.K.1
  • 10
    • 79960670161 scopus 로고    scopus 로고
    • p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways
    • Mostowy, S. et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem. 286, 26987-26995 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 26987-26995
    • Mostowy, S.1
  • 11
    • 84861049969 scopus 로고    scopus 로고
    • Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions
    • Jacquel, A. et al. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119, 4527-4531 (2012).
    • (2012) Blood , vol.119 , pp. 4527-4531
    • Jacquel, A.1
  • 12
    • 84863338179 scopus 로고    scopus 로고
    • Induction of autophagy is essential for monocyte-macrophage differentiation
    • Zhang, Y., Morgan, M. J., Chen, K., Choksi, S. & Liu, Z. G. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119, 2895-2905 (2012).
    • (2012) Blood , vol.119 , pp. 2895-2905
    • Zhang, Y.1    Morgan, M.J.2    Chen, K.3    Choksi, S.4    Liu, Z.G.5
  • 13
    • 78651282673 scopus 로고    scopus 로고
    • p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding
    • Itakura, E. & Mizushima, N. p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J. Cell Biol. 192, 17-27 (2011).
    • (2011) J. Cell Biol. , vol.192 , pp. 17-27
    • Itakura, E.1    Mizushima, N.2
  • 14
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163 (2007).
    • (2007) Cell , vol.131 , pp. 1149-1163
    • Komatsu, M.1
  • 15
    • 84860258296 scopus 로고    scopus 로고
    • Interferon-inducible effector mechanisms in cellautonomous immunity
    • MacMicking, J. D. Interferon-inducible effector mechanisms in cellautonomous immunity. Nat. Rev. Immunol. 12, 367-382 (2012).
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 367-382
    • MacMicking, J.D.1
  • 16
    • 84878606239 scopus 로고    scopus 로고
    • TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
    • Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647-658 (2013).
    • (2013) Nat. Cell Biol. , vol.15 , pp. 647-658
    • Settembre, C.1
  • 17
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
    • Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472-483 (2007).
    • (2007) Cell Metab , vol.6 , pp. 472-483
    • Zhao, J.1
  • 18
    • 14044270784 scopus 로고    scopus 로고
    • IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity
    • Tamura, T. et al. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174, 2573-2581 (2005).
    • (2005) J. Immunol. , vol.174 , pp. 2573-2581
    • Tamura, T.1
  • 19
    • 42649114059 scopus 로고    scopus 로고
    • The IRF family transcription factors in immunity and oncogenesis
    • Tamura, T., Yanai, H., Savitsky, D. & Taniguchi, T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 26, 535-584 (2008).
    • (2008) Annu. Rev. Immunol. , vol.26 , pp. 535-584
    • Tamura, T.1    Yanai, H.2    Savitsky, D.3    Taniguchi, T.4
  • 20
    • 84866565809 scopus 로고    scopus 로고
    • The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation
    • Chang, T. H., Xu, S., Tailor, P., Kanno, T. & Ozato, K. The small ubiquitin-like modifier-deconjugating enzyme sentrin-specific peptidase 1 switches IFN regulatory factor 8 from a repressor to an activator during macrophage activation. J. Immunol. 189, 3548-3556 (2012).
    • (2012) J. Immunol. , vol.189 , pp. 3548-3556
    • Chang, T.H.1    Xu, S.2    Tailor, P.3    Kanno, T.4    Ozato, K.5
  • 21
    • 84876493933 scopus 로고    scopus 로고
    • Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation
    • Kurotaki, D. et al. Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation. Blood 121, 1839-1849 (2013).
    • (2013) Blood , vol.121 , pp. 1839-1849
    • Kurotaki, D.1
  • 22
    • 41449113593 scopus 로고    scopus 로고
    • Innate immunity to intraphagosomal pathogens is mediated by interferon regulatory factor 8 (IRF-8) that stimulates the expression of macrophage-specific Nramp1 through antagonizing repression by c-Myc
    • Alter-Koltunoff, M. et al. Innate immunity to intraphagosomal pathogens is mediated by interferon regulatory factor 8 (IRF-8) that stimulates the expression of macrophage-specific Nramp1 through antagonizing repression by c-Myc. J. Biol. Chem. 283, 2724-2733 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 2724-2733
    • Alter-Koltunoff, M.1
  • 23
    • 0030896666 scopus 로고    scopus 로고
    • Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis
    • Fehr, T. et al. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J. Exp. Med. 185, 921-931 (1997).
    • (1997) J. Exp. Med. , vol.185 , pp. 921-931
    • Fehr, T.1
  • 24
    • 79960219807 scopus 로고    scopus 로고
    • IRF8 mutations and human dendritic-cell immunodeficiency
    • Hambleton, S. et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127-138 (2011).
    • (2011) N. Engl. J. Med. , vol.365 , pp. 127-138
    • Hambleton, S.1
  • 25
    • 34848879600 scopus 로고    scopus 로고
    • Icsbp1/IRF-8 is required for innate and adaptive immune responses against intracellular pathogens
    • Turcotte, K. et al. Icsbp1/IRF-8 is required for innate and adaptive immune responses against intracellular pathogens. J. Immunol. 179, 2467-2476 (2007).
    • (2007) J. Immunol. , vol.179 , pp. 2467-2476
    • Turcotte, K.1
  • 26
    • 84878130165 scopus 로고    scopus 로고
    • Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis
    • Rocca, A. et al. Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis. PLoS ONE 8, e62751 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e62751
    • Rocca, A.1
  • 27
    • 79959854280 scopus 로고    scopus 로고
    • Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis
    • Marquis, J. F. et al. Interferon regulatory factor 8 regulates pathways for antigen presentation in myeloid cells and during tuberculosis. PLoS Genet. 7, e1002097 (2011).
    • (2011) PLoS Genet , vol.7 , pp. e1002097
    • Marquis, J.F.1
  • 28
    • 80855134317 scopus 로고    scopus 로고
    • IRF8 governs expression of genes involved in innate and adaptive immunity in human and mouse germinal center B cells
    • Shin, D. M., Lee, C. H. & Morse, 3rd H. C. IRF8 governs expression of genes involved in innate and adaptive immunity in human and mouse germinal center B cells. PLoS ONE 6, e27384 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e27384
    • Shin, D.M.1    Lee, C.H.2    Morse, H.C.3
  • 29
    • 41349119601 scopus 로고    scopus 로고
    • The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse
    • Tailor, P., Tamura, T., Morse, 3rd H. C. & Ozato, K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111, 1942-1945 (2008).
    • (2008) Blood , vol.111 , pp. 1942-1945
    • Tailor, P.1    Tamura, T.2    Morse, H.C.3    Ozato, K.4
  • 30
    • 84876575052 scopus 로고    scopus 로고
    • INTERFEROME v2.0: An updated database of annotated interferon-regulated genes
    • Rusinova, I. et al. INTERFEROME v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 41, D1040-D1046 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. D1040-D1046
    • Rusinova, I.1
  • 31
    • 84880035042 scopus 로고    scopus 로고
    • Observation of autophagosome maturation in the interferon-gamma-primed and lipopolysaccharide-activated macrophages using a tandem fluorescent tagged LC3
    • Fujiwara, E., Washi, Y. & Matsuzawa, T. Observation of autophagosome maturation in the interferon-gamma-primed and lipopolysaccharide-activated macrophages using a tandem fluorescent tagged LC3. J. Immunol. Methods 394, 100-106 (2013).
    • (2013) J. Immunol. Methods , vol.394 , pp. 100-106
    • Fujiwara, E.1    Washi, Y.2    Matsuzawa, T.3
  • 32
    • 84884355522 scopus 로고    scopus 로고
    • Synergistic activation of inflammatory cytokine genes by interferon-g-induced chromatin remodeling and Toll-like receptor signaling
    • Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-g-induced chromatin remodeling and Toll-like receptor signaling. Immunity 39, 454-469 (2013).
    • (2013) Immunity , vol.39 , pp. 454-469
    • Qiao, Y.1
  • 33
    • 24744458604 scopus 로고    scopus 로고
    • Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages
    • Tamura, T., Thotakura, P., Tanaka, T. S., Ko, M. S. & Ozato, K. Identification of target genes and a unique cis element regulated by IRF-8 in developing macrophages. Blood 106, 1938-1947 (2005).
    • (2005) Blood , vol.106 , pp. 1938-1947
    • Tamura, T.1    Thotakura, P.2    Tanaka, T.S.3    Ko, M.S.4    Ozato, K.5
  • 35
    • 84868526475 scopus 로고    scopus 로고
    • Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide
    • Goussetis, D. J. et al. Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood 120, 3555-3562 (2012).
    • (2012) Blood , vol.120 , pp. 3555-3562
    • Goussetis, D.J.1
  • 36
    • 84862295360 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy
    • Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 (2012).
    • (2012) Autophagy , vol.8 , pp. 445-544
    • Klionsky, D.J.1
  • 37
  • 38
    • 19244384656 scopus 로고    scopus 로고
    • Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice
    • Tanaka, Y. et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902-906 (2000).
    • (2000) Nature , vol.406 , pp. 902-906
    • Tanaka, Y.1
  • 39
    • 80051488902 scopus 로고    scopus 로고
    • Proteomic survey of ubiquitin-linked nuclear proteins in interferon-stimulated macrophages
    • Kim, J. Y., Anderson, E. D., Huynh, W., Dey, A. & Ozato, K. Proteomic survey of ubiquitin-linked nuclear proteins in interferon-stimulated macrophages. J. Interferon Cytokine Res. 31, 619-628 (2011).
    • (2011) J. Interferon Cytokine Res. , vol.31 , pp. 619-628
    • Kim, J.Y.1    Anderson, E.D.2    Huynh, W.3    Dey, A.4    Ozato, K.5
  • 40
    • 61449168881 scopus 로고    scopus 로고
    • The sequestosome 1/p62 attenuates cytokine gene expression in activated macrophages by inhibiting IFN regulatory factor 8 and TNF receptor-associated factor 6/NF-kappaB activity
    • Kim, J. Y. & Ozato, K. The sequestosome 1/p62 attenuates cytokine gene expression in activated macrophages by inhibiting IFN regulatory factor 8 and TNF receptor-associated factor 6/NF-kappaB activity. J. Immunol. 182, 2131-2140 (2009).
    • (2009) J. Immunol. , vol.182 , pp. 2131-2140
    • Kim, J.Y.1    Ozato, K.2
  • 41
    • 70349652310 scopus 로고    scopus 로고
    • Listeria monocytogenes ActA-mediated escape from autophagic recognition
    • Yoshikawa, Y. et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 11, 1233-1240 (2009).
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1233-1240
    • Yoshikawa, Y.1
  • 42
    • 33646844623 scopus 로고    scopus 로고
    • Listeria monocytogenes: A multifaceted model
    • Hamon, M., Bierne, H. & Cossart, P. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 4, 423-434 (2006).
    • (2006) Nat. Rev. Microbiol. , vol.4 , pp. 423-434
    • Hamon, M.1    Bierne, H.2    Cossart, P.3
  • 43
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos, L. H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55-62 (2010).
    • (2010) Nat. Immunol. , vol.11 , pp. 55-62
    • Travassos, L.H.1
  • 44
    • 46849121421 scopus 로고    scopus 로고
    • Utilizing flow cytometry to monitor autophagy in living mammalian cells
    • Shvets, E., Fass, E. & Elazar, Z. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy 4, 621-628 (2008).
    • (2008) Autophagy , vol.4 , pp. 621-628
    • Shvets, E.1    Fass, E.2    Elazar, Z.3
  • 45
    • 79952354376 scopus 로고    scopus 로고
    • Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure
    • Ogawa, M. et al. Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure. Autophagy 7, 310-314 (2011).
    • (2011) Autophagy , vol.7 , pp. 310-314
    • Ogawa, M.1
  • 46
    • 0031952319 scopus 로고    scopus 로고
    • Killing mechanism of Listeria monocytogenes in activated macrophages as determined by an improved assay system
    • Ohya, S., Xiong, H., Tanabe, Y., Arakawa, M. & Mitsuyama, M. Killing mechanism of Listeria monocytogenes in activated macrophages as determined by an improved assay system. J. Med. Microbiol. 47, 211-215 (1998).
    • (1998) J. Med. Microbiol. , vol.47 , pp. 211-215
    • Ohya, S.1    Xiong, H.2    Tanabe, Y.3    Arakawa, M.4    Mitsuyama, M.5
  • 47
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
    • Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57 (2009).
    • (2009) Nat. Protoc. , vol.4 , pp. 44-57
    • Huang Da, W.1    Sherman, B.T.2    Lempicki, R.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.