메뉴 건너뛰기




Volumn 5, Issue 3, 2015, Pages 1-16

Biosolar cells: Global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

Author keywords

Artificial photosynthesis; Charge separation; Non adiabatic coupling; Quantum biology; Responsive matrix; Solar fuel

Indexed keywords


EID: 84928315915     PISSN: 20428898     EISSN: 20428901     Source Type: Journal    
DOI: 10.1098/rsfs.2015.0014     Document Type: Review
Times cited : (28)

References (103)
  • 1
    • 0004012299 scopus 로고    scopus 로고
    • International Energy Agency, France: International Energy Agency
    • International Energy Agency. 2014 Key world energy statistics. Paris, France: International Energy Agency.
    • (2014) Key World Energy Statistics
  • 2
    • 84875652261 scopus 로고    scopus 로고
    • Artificial photosynthesis as a frontier technology for energy sustainability
    • Faunce T et al. 2013 Artificial photosynthesis as a frontier technology for energy sustainability. Energy Environ. Sci. 6, 1074–1076. (doi:10.1039/c3ee40534f)
    • (2013) Energy Environ. Sci , vol.6 , pp. 1074-1076
    • Faunce, T.1
  • 3
    • 84875643352 scopus 로고    scopus 로고
    • Energy and environment policy case for a global project on artificial photosynthesis
    • Faunce TA et al. 2013 Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698. (doi:10.1039/c3ee00063j)
    • (2013) Energy Environ. Sci , vol.6 , pp. 695-698
    • Faunce, T.A.1
  • 4
    • 71449089431 scopus 로고    scopus 로고
    • No quick switch to lowcarbon energy
    • Kramer GJ, Haigh M. 2009 No quick switch to lowcarbon energy. Nature 462, 568–569. (doi:10.1038/462568a)
    • (2009) Nature , vol.462 , pp. 568-569
    • Kramer, G.J.1    Haigh, M.2
  • 5
    • 82955213953 scopus 로고    scopus 로고
    • Artificial photosynthesis—solar fuels: Current status and future prospects
    • Cogdell RJ, Brotosudarmo TH, Gardiner AT, Sanchez PM, Cronin L. 2010 Artificial photosynthesis—solar fuels: current status and future prospects. Biofuels 1, 861–876. (doi:10.4155/bfs.10.62)
    • (2010) Biofuels , vol.1 , pp. 861-876
    • Cogdell, R.J.1    Brotosudarmo, T.H.2    Gardiner, A.T.3    Sanchez, P.M.4    Cronin, L.5
  • 6
    • 84857093918 scopus 로고    scopus 로고
    • Realizing artificial photosynthesis
    • Gust D, Moore TA, Moore AL. 2012 Realizing artificial photosynthesis. Faraday Disc. 155, 9–26. (doi:10.1039/c1fd00110h)
    • (2012) Faraday Disc , vol.155 , pp. 9-26
    • Gust, D.1    Moore, T.A.2    Moore, A.L.3
  • 7
    • 77954196565 scopus 로고    scopus 로고
    • Energy conversion in natural and artificial photosynthesis
    • McConnell I, Li G, Brudvig GW. 2010 Energy conversion in natural and artificial photosynthesis. Chem. Biol. 17, 434–447. (doi:10.1016/j.chembiol.2010.05.005)
    • (2010) Chem. Biol , vol.17 , pp. 434-447
    • McConnell, I.1    Li, G.2    Brudvig, G.W.3
  • 8
    • 71149106644 scopus 로고    scopus 로고
    • Integration of catalysis with storage for the design of multi-electron photochemistry devices for solar fuel
    • de Groot HJ. 2010 Integration of catalysis with storage for the design of multi-electron photochemistry devices for solar fuel. Appl. Magn. Reson. 37, 497–503. (doi:10.1007/s00723-009-0097-0)
    • (2010) Appl. Magn. Reson , vol.37 , pp. 497-503
    • De Groot, H.J.1
  • 9
    • 33645004855 scopus 로고    scopus 로고
    • Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales
    • Noy D, Moser CC, Dutton PL. 2006 Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. Biochim. Biophys. Acta 1757, 90–105. (doi:10.1016/j.bbabio.2005.11.010)
    • (2006) Biochim. Biophys. Acta , vol.1757 , pp. 90-105
    • Noy, D.1    Moser, C.C.2    Dutton, P.L.3
  • 10
    • 84883669048 scopus 로고    scopus 로고
    • An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
    • Hu S, Xiang C, Haussener S, Berger AD, Lewis NS. 2013 An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993. (doi:10.1039/c3ee40453f)
    • (2013) Energy Environ. Sci , vol.6 , pp. 2984-2993
    • Hu, S.1    Xiang, C.2    Haussener, S.3    Berger, A.D.4    Lewis, N.S.5
  • 11
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
    • Blankenship RE et al. 2011 Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809. (doi:10.1126/science.1200165)
    • (2011) Science , vol.332 , pp. 805-809
    • Blankenship, R.E.1
  • 12
    • 0017552270 scopus 로고
    • Limits on the yield of photochemical solar energy conversion
    • Ross RT, Hsiao TL. 1977 Limits on the yield of photochemical solar energy conversion. J. Appl. Phys. 48, 4783–4785. (doi:10.1063/1.323494)
    • (1977) J. Appl. Phys , vol.48 , pp. 4783-4785
    • Ross, R.T.1    Hsiao, T.L.2
  • 13
    • 84869449119 scopus 로고    scopus 로고
    • Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies
    • Frischmann PD, Mahata K, Wurthner F. 2013 Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chem. Soc. Rev. 42, 1847–1870. (doi:10.1039/c2cs35223k)
    • (2013) Chem. Soc. Rev , vol.42 , pp. 1847-1870
    • Frischmann, P.D.1    Mahata, K.2    Wurthner, F.3
  • 14
    • 72949116749 scopus 로고    scopus 로고
    • Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems
    • Wasielewski MR. 2009 Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921. (doi:10.1021/ar9001735)
    • (2009) Acc. Chem. Res , vol.42 , pp. 1910-1921
    • Wasielewski, M.R.1
  • 15
    • 84891463158 scopus 로고    scopus 로고
    • Efficient light harvesting via sequential two-step energy accumulation using a Ru–Re5 multinuclear complex incorporated into periodic mesoporous organosilica
    • Yamamoto Y, Takeda H, Yui T, Ueda Y, Koike K, Inagaki S, Ishitani O. 2014 Efficient light harvesting via sequential two-step energy accumulation using a Ru–Re5 multinuclear complex incorporated into periodic mesoporous organosilica. Chem. Sci. 5, 639–648. (doi:10.1039/c3sc51959g)
    • (2014) Chem. Sci , vol.5 , pp. 639-648
    • Yamamoto, Y.1    Takeda, H.2    Yui, T.3    Ueda, Y.4    Koike, K.5    Inagaki, S.6    Ishitani, O.7
  • 16
    • 0942303037 scopus 로고
    • Mimicking photosynthesis
    • Gust D, Moore TA. 1989 Mimicking photosynthesis. Science 244, 35–41. (doi:10.1126/science.244.4900.35)
    • (1989) Science , vol.244 , pp. 35-41
    • Gust, D.1    Moore, T.A.2
  • 17
    • 84905014769 scopus 로고    scopus 로고
    • In-silico design of a donor–antenna–acceptor supramolecular complex for photoinduced charge separation
    • Monti A, de Groot HJM, Buda F. 2014 In-silico design of a donor–antenna–acceptor supramolecular complex for photoinduced charge separation. J. Phys. Chem. C 118, 15600–15609. (doi:10.1021/jp505105a)
    • (2014) J. Phys. Chem. C , vol.118 , pp. 15600-15609
    • Monti, A.1    De Groot, H.2    Buda, F.3
  • 18
    • 84888583789 scopus 로고    scopus 로고
    • Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts
    • Wen F, Li C. 2013 Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc. Chem. Res. 46, 2355–2364. (doi:10.1021/ar300224u)
    • (2013) Acc. Chem. Res , vol.46 , pp. 2355-2364
    • Wen, F.1    Li, C.2
  • 20
    • 85028099698 scopus 로고    scopus 로고
    • Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A°
    • Umena Y, Kawakami K, Shen JR, Kamiya N. 2011 Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A°. Nature 473, 55–60. (doi:10.1038/nature09913)
    • (2011) Nature , vol.473 , pp. 55-60
    • Umena, Y.1    Kawakami, K.2    Shen, J.R.3    Kamiya, N.4
  • 21
    • 78449237363 scopus 로고    scopus 로고
    • The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis
    • Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. 2010 The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761. (doi:10.1002/cctc.201000126)
    • (2010) Chemcatchem , vol.2 , pp. 724-761
    • Dau, H.1    Limberg, C.2    Reier, T.3    Risch, M.4    Roggan, S.5    Strasser, P.6
  • 22
    • 72949083473 scopus 로고    scopus 로고
    • Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation
    • Dau H, Zaharievva I. 2009 Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861–1870. (doi:10.1021/ar900225y)
    • (2009) Acc. Chem. Res , vol.42 , pp. 1861-1870
    • Dau, H.1    Zaharievva, I.2
  • 23
    • 84866353926 scopus 로고    scopus 로고
    • Surface-immobilized single-site iridium complexes for electrocatalytic water splitting
    • Joya KS, Subbaiyan NK, D’Souza F, de Groot HJM. 2012 Surface-immobilized single-site iridium complexes for electrocatalytic water splitting. Angew. Chem. Int. Ed. Engl. 124, 9739–9743. (doi:10.1002/ange.201203560)
    • (2012) Angew. Chem. Int. Ed. Engl , vol.124 , pp. 9739-9743
    • Joya, K.S.1    Subbaiyan, N.K.2    D’Souza, F.3    De Groot, H.4
  • 25
    • 84904861822 scopus 로고    scopus 로고
    • Electrochemical and spectroelectrochemical characterization of an iridium-based molecular catalyst for water splitting: Turnover frequencies, stability, and electrolyte effects
    • Diaz-Morales O, Hersbach TJ, Hetterscheid DG, Reek JN, Koper MT. 2014 Electrochemical and spectroelectrochemical characterization of an iridium-based molecular catalyst for water splitting: turnover frequencies, stability, and electrolyte effects. J. Am. Chem. Soc. 136, 10432–10439. (doi:10.1021/ja504460w)
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 10432-10439
    • Diaz-Morales, O.1    Hersbach, T.J.2    Hetterscheid, D.G.3    Reek, J.N.4    Koper, M.T.5
  • 26
    • 84907611162 scopus 로고    scopus 로고
    • Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes
    • Wang L, Duan L, Wang Y, Ahlquist MSG, Sun L. 2014 Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes. Chem. Commun. 50, 12947–12950. (doi:10.1039/C4CC05069j)
    • (2014) Chem. Commun , vol.50 , pp. 12947-12950
    • Wang, L.1    Duan, L.2    Wang, Y.3    Ahlquist, M.4    Sun, L.5
  • 27
    • 0040999286 scopus 로고
    • Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes
    • Gersten SW, Samuels GJ, Meyer TJ. 1982 Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes. J. Am. Chem. Soc. 104, 4029–4030. (doi:10.1021/ja00378a053)
    • (1982) J. Am. Chem. Soc , vol.104 , pp. 4029-4030
    • Gersten, S.W.1    Samuels, G.J.2    Meyer, T.J.3
  • 28
    • 50149121231 scopus 로고    scopus 로고
    • In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and CO2þ
    • Kanan MW, Nocera DG. 2008 In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and CO2þ. Science 321, 1072–1075. (doi:10.1126/science.1162018)
    • (2008) Science , vol.321 , pp. 1072-1075
    • Kanan, M.W.1    Nocera, D.G.2
  • 29
    • 61349084242 scopus 로고    scopus 로고
    • Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygenevolving catalysts
    • Jiao F, Frei H. 2009 Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygenevolving catalysts. Angew. Chem. Int. Ed. Engl. 48, 1841–1844. (doi:10.1002/anie.200805534)
    • (2009) Angew. Chem. Int. Ed. Engl , vol.48 , pp. 1841-1844
    • Jiao, F.1    Frei, H.2
  • 30
    • 80053268671 scopus 로고    scopus 로고
    • Light-driven bioinspired water splitting: Recent developments in photoelectrode materials
    • Artero V, Fontecave M. 2011 Light-driven bioinspired water splitting: recent developments in photoelectrode materials. C. R. Chim. 14, 799–810. (doi:10.1016/j.crci.2011.06.004)
    • (2011) C. R. Chim , vol.14 , pp. 799-810
    • Artero, V.1    Fontecave, M.2
  • 31
    • 84911433816 scopus 로고    scopus 로고
    • Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3 2/CO2 system
    • Joya KS, Takanabe K, de Groot HJM. 2014 Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3 2/CO2 system. Adv. Energy Mater. 4, 1400252. (doi:10.1002/aenm.201400252)
    • (2014) Adv. Energy Mater , vol.4
    • Joya, K.S.1    Takanabe, K.2    De Groot, H.3
  • 32
    • 84857603373 scopus 로고    scopus 로고
    • Catalysts made of earthabundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges
    • Du P, Eisenberg R. 2012 Catalysts made of earthabundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021. (doi:10.1039/c2ee03250c)
    • (2012) Energy Environ. Sci , vol.5 , pp. 6012-6021
    • Du, P.1    Eisenberg, R.2
  • 33
    • 77953751030 scopus 로고    scopus 로고
    • Nickelborate oxygen-evolving catalyst that functions under benign conditions
    • Dinca M, Surendranath Y, Nocera DG. 2012 Nickelborate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337–10341. (doi:10.1073/pnas.1001859107)
    • (2012) Proc. Natl Acad. Sci. USA , vol.107 , pp. 10337-10341
    • Dinca, M.1    Surendranath, Y.2    Nocera, D.G.3
  • 34
    • 77956230335 scopus 로고    scopus 로고
    • Electrocatalytic and photocatalytic water oxidation to dioxygen based on metal complexes
    • Yamazaki H, Shouji A, Kajita M, Yagi M. 2010 Electrocatalytic and photocatalytic water oxidation to dioxygen based on metal complexes. Coord. Chem. Rev. 254, 2483–2491. (doi:10.1016/j.ccr.2010.02.008)
    • (2010) Coord. Chem. Rev , vol.254 , pp. 2483-2491
    • Yamazaki, H.1    Shouji, A.2    Kajita, M.3    Yagi, M.4
  • 35
    • 84903533096 scopus 로고    scopus 로고
    • Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3 2/CO2 system at near-neutral pH
    • Joya KS, Joya YF, de Groot HJM. 2014 Ni-based electrocatalyst for water oxidation developed in-situ in a HCO3 2/CO2 system at near-neutral pH. Adv. Energy Mater. 4, 1301929. (doi:10.1002/aenm.201301929)
    • (2014) Adv. Energy Mater , vol.4
    • Joya, K.S.1    Joya, Y.F.2    De Groot, H.3
  • 36
    • 67649958205 scopus 로고    scopus 로고
    • Making hydrogen from water using a homogeneous system without noble metals
    • Lazarides T, McCormick T, Du P, Luo G, Lindley B, Eisenberg R. 2009 Making hydrogen from water using a homogeneous system without noble metals. J. Am. Chem. Soc. 131, 9192–9194. (doi:10.1021/ja903044n)
    • (2009) J. Am. Chem. Soc , vol.131 , pp. 9192-9194
    • Lazarides, T.1    McCormick, T.2    Du, P.3    Luo, G.4    Lindley, B.5    Eisenberg, R.6
  • 37
    • 79959814780 scopus 로고    scopus 로고
    • A nickel–manganese catalyst as a biomimic of the active site of NiFe hydrogenases: A combined electrocatalytical and DFT mechanistic study
    • Fourmond V, Canaguier S, Golly B, Field MJ, Fontecave M, Artero V. 2011 A nickel–manganese catalyst as a biomimic of the active site of NiFe hydrogenases: a combined electrocatalytical and DFT mechanistic study. Energy Environ. Sci. 4, 2417–2427. (doi:10.1039/c0ee00736f)
    • (2011) Energy Environ. Sci , vol.4 , pp. 2417-2427
    • Fourmond, V.1    Canaguier, S.2    Golly, B.3    Field, M.J.4    Fontecave, M.5    Artero, V.6
  • 38
    • 84896548254 scopus 로고    scopus 로고
    • Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase
    • Jian JX et al. 2013 Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nat. Commun. 4, 2695. (doi:10.1038/ncomms3695)
    • (2013) Nat. Commun , vol.4 , pp. 2695
    • Jian, J.X.1
  • 39
    • 84898801157 scopus 로고    scopus 로고
    • Mimicking hydrogenases: From biomimetics to artificial enzymes
    • Simmons TR, Berggren G, Bacchi M, Fontecave M, Artero V. 2014 Mimicking hydrogenases: from biomimetics to artificial enzymes. Coord. Chem. Rev. 270–271, 127–150. (doi:10.1016/j.ccr.2013.12.018)
    • (2014) Coord. Chem. Rev , vol.270-271 , pp. 127-150
    • Simmons, T.R.1    Berggren, G.2    Bacchi, M.3    Fontecave, M.4    Artero, V.5
  • 40
    • 84879886576 scopus 로고    scopus 로고
    • Biomimetic assembly and activation of [FeFe]-hydrogenases
    • Berggren G et al. 2013 Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69. (doi:10.1038/nature12239)
    • (2013) Nature , vol.499 , pp. 66-69
    • Berggren, G.1
  • 41
    • 84904438276 scopus 로고    scopus 로고
    • Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-ofthe- art accomplishment, challenges, and prospects. Adv
    • Tu W, Zhou Y, Zou Z. 2014 Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-ofthe- art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607–4626. (doi:10.1002/adma.201400087)
    • (2014) Mater , vol.26 , pp. 4607-4626
    • Tu, W.1    Zhou, Y.2    Zou, Z.3
  • 42
    • 84870389133 scopus 로고    scopus 로고
    • Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond
    • Izumi Y. 2013 Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev. 257, 171–186. (doi:10.1016/j.ccr.2012.04.018)
    • (2013) Coord. Chem. Rev , vol.257 , pp. 171-186
    • Izumi, Y.1
  • 43
    • 84915748630 scopus 로고    scopus 로고
    • Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system
    • Yadav RK, Oh GH, Park NJ, Kumar A, Kong KJ, Baeg JO. 2014 Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system. J. Am. Chem. Soc. 136, 16728–16731. (doi:10.1021/ja509650r)
    • (2014) J. Am. Chem. Soc , vol.136 , pp. 16728-16731
    • Yadav, R.K.1    Oh, G.H.2    Park, N.J.3    Kumar, A.4    Kong, K.J.5    Baeg, J.O.6
  • 44
    • 0032540476 scopus 로고    scopus 로고
    • A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water splitting
    • Khaselev O. 1998 A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427. (doi:10.1126/science.280.5362.425)
    • (1998) Science , vol.280 , pp. 425-427
    • Khaselev, O.1
  • 47
    • 84883669048 scopus 로고    scopus 로고
    • An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
    • Hu S, Xiang C, Haussener S, Berger AD, Lewis NS. 2013 An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993. (doi:10.1039/C3EE40453F)
    • (2013) Energy Environ. Sci , vol.6 , pp. 2984-2993
    • Hu, S.1    Xiang, C.2    Haussener, S.3    Berger, A.D.4    Lewis, N.S.5
  • 48
    • 84928333968 scopus 로고    scopus 로고
    • Engineered natural photosynthesis
    • (eds D Ginley, D Cahen, Cambridge, UK: Cambridge University Press
    • de Groot H. 2011 Engineered natural photosynthesis. In Fundamentals of materials for energy and environmental sustainability (eds D Ginley, D Cahen), pp. 365–378. Cambridge, UK: Cambridge University Press.
    • (2011) Fundamentals of Materials for Energy and Environmental Sustainability , pp. 365-378
    • De Groot, H.1
  • 49
    • 72949083473 scopus 로고    scopus 로고
    • Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation
    • Dau H, Zaharieva I. 2009 Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861–1870. (doi:10.1021/ar900225y)
    • (2009) Acc. Chem. Res , vol.42 , pp. 1861-1870
    • Dau, H.1    Zaharieva, I.2
  • 50
    • 85020704430 scopus 로고    scopus 로고
    • The artificial leaf: The quest to outsmart nature
    • (eds GJ Kramer, B Vermeer, Amsterdam, The Netherlands: Shell International BV
    • de Groot HJM. 2014 The artificial leaf: the quest to outsmart nature. In The colours of energy, essays on the future of our energy system (eds GJ Kramer, B Vermeer), pp. 177–186. Amsterdam, The Netherlands: Shell International BV.
    • (2014) The Colours of Energy, Essays on the Future of Our Energy System , pp. 177-186
    • De Groot, H.1
  • 51
    • 84887263227 scopus 로고    scopus 로고
    • Optimal rates for electron transfer in Marcus theory
    • Mourokh L, Lloyd S. 2013 Optimal rates for electron transfer in Marcus theory. Phys. Rev. E 88, 042819. (doi:10.1103/PhysRevE.88.042819)
    • (2013) Phys. Rev. E , vol.88
    • Mourokh, L.1    Lloyd, S.2
  • 52
    • 53949088888 scopus 로고    scopus 로고
    • Farred fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching
    • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR. 2008 Farred fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett. 582, 3625–3631. (doi:10.1016/j.febslet.2008.09.044)
    • (2008) FEBS Lett , vol.582 , pp. 3625-3631
    • Miloslavina, Y.1    Wehner, A.2    Lambrev, P.H.3    Wientjes, E.4    Reus, M.5    Garab, G.6    Croce, R.7    Holzwarth, A.R.8
  • 53
    • 20544455110 scopus 로고    scopus 로고
    • Density functional theory calculations on the dielectric constant dependence of the oxidation potential of chlorophyll: Implication for the high potential of P680 in photosystem II
    • Hasegawa K, Noguchi T. 2005 Density functional theory calculations on the dielectric constant dependence of the oxidation potential of chlorophyll: implication for the high potential of P680 in photosystem II. Biochemistry 44, 8865–8872. (doi:10.1021/bi050273c)
    • (2005) Biochemistry , vol.44 , pp. 8865-8872
    • Hasegawa, K.1    Noguchi, T.2
  • 54
    • 84906084704 scopus 로고    scopus 로고
    • Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation
    • Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W. 2014 Photosynthesis. Electronic structure of the oxygen-evolving complex in photosystem II prior to O-O bond formation. Science 345, 804–808. (doi:10.1126/science.1254910)
    • (2014) Science , vol.345 , pp. 804-808
    • Cox, N.1    Retegan, M.2    Neese, F.3    Pantazis, D.A.4    Boussac, A.5    Lubitz, W.6
  • 55
    • 84928328264 scopus 로고    scopus 로고
    • Elementary excitations in biological systems
    • (eds J Bassani, J Liedl, P Wyder, Amsterdam, The Netherlands: Elsevier Science
    • de Groot HJM, Matysik J, Zaanen J. 2005 Elementary excitations in biological systems. In Encyclopedia of condensed matter physics (eds J Bassani, J Liedl, P Wyder), pp. 141–146. Amsterdam, The Netherlands: Elsevier Science.
    • (2005) Encyclopedia of Condensed Matter Physics , pp. 141-146
    • De Groot, H.1    Matysik, J.2    Zaanen, J.3
  • 56
    • 84877776966 scopus 로고    scopus 로고
    • Solidstate NMR of nanomachines involved in photosynthetic energy conversion
    • Alia A, Buda F, de Groot HJM, Matysik J. 2013 Solidstate NMR of nanomachines involved in photosynthetic energy conversion. Annu. Rev. Biophys. 42, 675–699. (doi:10.1146/annurevbiophys-083012-130415)
    • (2013) Annu. Rev. Biophys , vol.42 , pp. 675-699
    • Alia, A.1    Buda, F.2    De Groot, H.3    Matysik, J.4
  • 57
    • 2942750244 scopus 로고    scopus 로고
    • Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A redfield theory approach
    • Novoderezhkin V, Yakovlev A, van Grondelle R, Shuvalov V. 2004 Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: a redfield theory approach. J. Phys. Chem. B 108, 7445–7457. (doi:10.1021/jp0373346)
    • (2004) J. Phys. Chem. B , vol.108 , pp. 7445-7457
    • Novoderezhkin, V.1    Yakovlev, A.2    Van Grondelle, R.3    Shuvalov, V.4
  • 58
    • 84887961173 scopus 로고    scopus 로고
    • Vibrations, quanta and biology
    • Huelga SF, Plenio MB. 2013 Vibrations, quanta and biology. Contemp. Phys. 54, 181–207. (doi:10.1080/00405000.2013.829687)
    • (2013) Contemp. Phys , vol.54 , pp. 181-207
    • Huelga, S.F.1    Plenio, M.B.2
  • 59
    • 84907967400 scopus 로고    scopus 로고
    • Real-time simulations of photoinduced coherent charge transfer and proton-coupled electron transfer
    • Eisenmayer TJ, Buda F. 2014 Real-time simulations of photoinduced coherent charge transfer and proton-coupled electron transfer. Chem Phys Chem 15, 3258–3263. (doi:10.1002/cphc.201402444)
    • (2014) Chem Phys Chem , vol.15 , pp. 3258-3263
    • Eisenmayer, T.J.1    Buda, F.2
  • 63
    • 0000419823 scopus 로고
    • Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy
    • Vos MH, Rappaport F, Lambry J-C, Breton J, Martin J-L. 1993 Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363, 320–325. (doi:10.1038/363320a0)
    • (1993) Nature , vol.363 , pp. 320-325
    • Vos, M.H.1    Rappaport, F.2    Lambry, J.-C.3    Breton, J.4    Martin, J.-L.5
  • 65
    • 84857515422 scopus 로고    scopus 로고
    • Good vibrations in enzyme-catalysed reactions
    • Hay S, Scrutton NS. 2012 Good vibrations in enzyme-catalysed reactions. Nat. Chem. 4, 161–168. (doi:10.1038/nchem.1223)
    • (2012) Nat. Chem , vol.4 , pp. 161-168
    • Hay, S.1    Scrutton, N.S.2
  • 66
    • 70349536422 scopus 로고    scopus 로고
    • The primary photoreaction of rhodopsin
    • (eds EG Stavenga, WJ DeGrip, EN Pugh Jr, Leiden, The Netherlands: Elsevier Science
    • Mathies RA, Lugtenburg J. 2000 The primary photoreaction of rhodopsin. In Handbook of biological physics (eds EG Stavenga, WJ DeGrip, EN Pugh Jr), pp. 55–90. Leiden, The Netherlands: Elsevier Science.
    • (2000) Handbook of Biological Physics , pp. 55-90
    • Mathies, R.A.1    Lugtenburg, J.2
  • 67
    • 77953608100 scopus 로고    scopus 로고
    • Noise-assisted energy transfer in quantum networks and light-harvesting complexes
    • Chin AW, Datta A, Caruso F, Huelga SF, Plenio MB. 2010 Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New J. Phys. 12, 065002. (doi:10.1088/1367-2630/12/6/065002)
    • (2010) New J. Phys , vol.12
    • Chin, A.W.1    Datta, A.2    Caruso, F.3    Huelga, S.F.4    Plenio, M.B.5
  • 68
    • 84873411183 scopus 로고    scopus 로고
    • The role of nonequilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes
    • Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB. 2013 The role of nonequilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113–118. (doi:10.1038/nphys2515)
    • (2013) Nat. Phys , vol.9 , pp. 113-118
    • Chin, A.W.1    Prior, J.2    Rosenbach, R.3    Caycedo-Soler, F.4    Huelga, S.F.5    Plenio, M.B.6
  • 71
    • 84898783774 scopus 로고    scopus 로고
    • Evolution of reaction center mimics to systems capable of generating solar fuel
    • Sherman BD, Vaughn MD, Bergkamp JJ, Gust D, Moore AL, Moore TA. 2014 Evolution of reaction center mimics to systems capable of generating solar fuel. Photosynth. Res. 120, 59–70. (doi:10.1007/s11120-013-9795-4)
    • (2014) Photosynth. Res , vol.120 , pp. 59-70
    • Sherman, B.D.1    Vaughn, M.D.2    Bergkamp, J.J.3    Gust, D.4    Moore, A.L.5    Moore, T.A.6
  • 74
    • 84881162564 scopus 로고    scopus 로고
    • Efficient solar water splitting by enhanced charge separation in a bismuth vanadatesilicon tandem photoelectrode
    • Abdi FF, Han L, Smets AHM, Zeman M, Dam B, van de Krol R. 2013 Efficient solar water splitting by enhanced charge separation in a bismuth vanadatesilicon tandem photoelectrode. Nat. Commun. 4, 2195. (doi:10.1038/ncomms3195)
    • (2013) Nat. Commun , vol.4 , pp. 2195
    • Abdi, F.F.1    Han, L.2    Smets, A.3    Zeman, M.4    Dam, B.5    Van De Krol, R.6
  • 76
    • 84906256427 scopus 로고    scopus 로고
    • Fuel from water: The photochemical generation of hydrogen from water
    • Han Z, Eisenberg R. 2014 Fuel from water: the photochemical generation of hydrogen from water. Acc. Chem. Res. 47, 2537–2544. (doi:10.1021/ar5001605)
    • (2014) Acc. Chem. Res , vol.47 , pp. 2537-2544
    • Han, Z.1    Eisenberg, R.2
  • 78
    • 84919787390 scopus 로고    scopus 로고
    • Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production
    • Wang M, Han K, Zhang S, Sun L. 2015 Integration of organometallic complexes with semiconductors and other nanomaterials for photocatalytic H2 production. Coord. Chem. Rev. 287, 1–14. (doi:10.1016/j.ccr.2014.12.005)
    • (2015) Coord. Chem. Rev , vol.287 , pp. 1-14
    • Wang, M.1    Han, K.2    Zhang, S.3    Sun, L.4
  • 79
    • 72949117426 scopus 로고    scopus 로고
    • Visible light water splitting using dyesensitized oxide semiconductors
    • Youngblood JW, Lee S-HA, Maeda K, Mallouk TE. 2009 Visible light water splitting using dyesensitized oxide semiconductors. Acc. Chem. Res. 42, 1966–1973. (doi:10.1021/ar9002398)
    • (2009) Acc. Chem. Res , vol.42 , pp. 1966-1973
    • Youngblood, J.W.1    Lee, S.-H.2    Maeda, K.3    Mallouk, T.E.4
  • 80
    • 84866874701 scopus 로고    scopus 로고
    • Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator
    • Zhao Y et al. 2012 Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proc. Natl Acad. Sci. USA 109, 15612–15616. (doi:10.1073/pnas.1118339109)
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 15612-15616
    • Zhao, Y.1
  • 81
    • 84927919999 scopus 로고    scopus 로고
    • Photobioelectrochemical cells for energy conversion, sensing, and optoelectronic applications
    • Tel-Vered R, Willner I. 2014 Photobioelectrochemical cells for energy conversion, sensing, and optoelectronic applications. Chem Electro Chem 1, 1778–1797. (doi:10.1002/celc.201402133)
    • (2014) Chem Electro Chem , vol.1 , pp. 1778-1797
    • Tel-Vered, R.1    Willner, I.2
  • 82
    • 84866877633 scopus 로고    scopus 로고
    • Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems
    • Kargul J, Janna Olmos JD, Krupnik T. 2012 Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. J. Plant Physiol. 169, 1639–1653. (doi:10.1016/j.jplph.2012.05.018)
    • (2012) J. Plant Physiol , vol.169 , pp. 1639-1653
    • Kargul, J.1    Janna Olmos, J.D.2    Krupnik, T.3
  • 84
    • 84905168918 scopus 로고    scopus 로고
    • A nanoscale bio-inspired light-harvesting system developed from self-assembled alkylfunctionalized metallochlorin nano-aggregates
    • Ocakoglu K, Joya KS, Harputlu E, Tarnowska A, Gryko DT. 2014 A nanoscale bio-inspired light-harvesting system developed from self-assembled alkylfunctionalized metallochlorin nano-aggregates. Nanoscale 6, 9625–9631. (doi:10.1039/c4nr01661k)
    • (2014) Nanoscale , vol.6 , pp. 9625-9631
    • Ocakoglu, K.1    Joya, K.S.2    Harputlu, E.3    Tarnowska, A.4    Gryko, D.T.5
  • 85
    • 33646727998 scopus 로고    scopus 로고
    • Chlorins programmed for self-assembly
    • In Supermolecular dye chemistry (ed. F Wurthner)., Berlin, Germany: Springer
    • Balaban TS, Tamiaki H, Holzwarth AR. 2005 Chlorins programmed for self-assembly. In Supermolecular dye chemistry (ed. F Wurthner). Topics in Current Chemistry, vol. 258, pp. 1–38. Berlin, Germany: Springer. (doi:10.1007/b137480)
    • (2005) Topics in Current Chemistry , vol.258 , pp. 1-38
    • Balaban, T.S.1    Tamiaki, H.2    Holzwarth, A.R.3
  • 86
    • 79959818899 scopus 로고    scopus 로고
    • On the way to biomimetic dye aggregate solar cells
    • Marek PL, Hahn H, Balaban TS. 2011 On the way to biomimetic dye aggregate solar cells. Energy Environ. Sci. 4, 2366–2378. (doi:10.1039/c1ee01053k)
    • (2011) Energy Environ. Sci , vol.4 , pp. 2366-2378
    • Marek, P.L.1    Hahn, H.2    Balaban, T.S.3
  • 87
    • 67650902013 scopus 로고    scopus 로고
    • Zinc chlorins for artificial light-harvesting selfassemble into antiparallel stacks forming a microcrystalline solid-state material
    • Ganapathy S, Sengupta S, Wawrzyniak PK, Huber V, Buda F, Baumeister U, Würthner F, de Groot HJM. 2009 Zinc chlorins for artificial light-harvesting selfassemble into antiparallel stacks forming a microcrystalline solid-state material. Proc. Natl Acad. Sci. USA 106, 11472–11477. (doi:10.1073/pnas.0811872106)
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 11472-11477
    • Ganapathy, S.1    Sengupta, S.2    Wawrzyniak, P.K.3    Huber, V.4    Buda, F.5    Baumeister, U.6    Würthner, F.7    De Groot, H.8
  • 89
    • 84905466316 scopus 로고    scopus 로고
    • Synthesis and photophysics of a red-light absorbing supramolecular chromophore system
    • Rombouts JA et al. 2014 Synthesis and photophysics of a red-light absorbing supramolecular chromophore system. Chemistry 20, 10285–10291. (doi:10.1002/chem.201402398)
    • (2014) Chemistry , vol.20 , pp. 10285-10291
    • Rombouts, J.A.1
  • 91
    • 84901049614 scopus 로고    scopus 로고
    • Direct probing of photoinduced electron transfer in a self-assembled biomimetic [2Fe2S]-hydrogenase complex using ultrafast vibrational spectroscopy
    • Li P, Amirjalayer S, Hartl F, Lutz M, de Bruin B, Becker R, Woutersen S, Reek JN. 2014 Direct probing of photoinduced electron transfer in a self-assembled biomimetic [2Fe2S]-hydrogenase complex using ultrafast vibrational spectroscopy. Inorg. Chem. 53, 5373–5383. (doi:10.1021/ic500777d)
    • (2014) Inorg. Chem , vol.53 , pp. 5373-5383
    • Li, P.1    Amirjalayer, S.2    Hartl, F.3    Lutz, M.4    De Bruin, B.5    Becker, R.6    Woutersen, S.7    Reek, J.N.8
  • 92
    • 84903973805 scopus 로고    scopus 로고
    • Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts
    • Gao L et al. 2014 Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. Nano Lett. 14, 3715–3719. (doi:10.1021/nl404540f)
    • (2014) Nano Lett , vol.14 , pp. 3715-3719
    • Gao, L.1
  • 93
    • 84878549136 scopus 로고    scopus 로고
    • Triple junction polymer solar cells for photoelectrochemical water splitting
    • Esiner S, van Eersel H, Wienk MM, Janssen RAJ. 2013 Triple junction polymer solar cells for photoelectrochemical water splitting. Adv. Mater. 25, 2932–2936. (doi:10.1002/adma.201300439)
    • (2013) Adv. Mater , vol.25 , pp. 2932-2936
    • Esiner, S.1    Van Eersel, H.2    Wienk, M.M.3    Janssen, R.4
  • 95
    • 84902603298 scopus 로고    scopus 로고
    • Energy and climate impacts of producing synthetic hydrocarbon fuels from CO 2
    • van der Giesen C, Kleijn R, Kramer GJ. 2014 Energy and climate impacts of producing synthetic hydrocarbon fuels from CO 2. Environ. Sci. Technol. 48, 7111–7121. (doi:10.1021/es500191g)
    • (2014) Environ. Sci. Technol , vol.48 , pp. 7111-7121
    • Van Der Giesen, C.1    Kleijn, R.2    Kramer, G.J.3
  • 96
    • 84862976750 scopus 로고    scopus 로고
    • An institutional approach to solar fuels research
    • Messinger J. 2012 An institutional approach to solar fuels research. Aust. J. Chem. 65, 573–576. (doi:10.1071/ch12020)
    • (2012) Aust. J. Chem , vol.65 , pp. 573-576
    • Messinger, J.1
  • 98
    • 85020692256 scopus 로고    scopus 로고
    • Start stopping: Towards a fossil fuel ethic for a cultural transition
    • (eds GJ Kramer, B Vermeer, Amsterdam, The Netherlands: Shell International
    • Princen T. 2014 Start stopping: towards a fossil fuel ethic for a cultural transition. In The colours of energy (eds GJ Kramer, B Vermeer), pp. 69–79. Amsterdam, The Netherlands: Shell International.
    • (2014) The Colours of Energy , pp. 69-79
    • Princen, T.1
  • 101
    • 84879080540 scopus 로고    scopus 로고
    • Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces
    • Akimov AV, Neukirch AJ, Prezhdo OV. 2013 Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 113, 4496–4565. (doi:10.1021/cr3004899)
    • (2013) Chem. Rev , vol.113 , pp. 4496-4565
    • Akimov, A.V.1    Neukirch, A.J.2    Prezhdo, O.V.3
  • 102
    • 5844355084 scopus 로고    scopus 로고
    • Electron–electron–nuclear three-spin mixing in spin-correlated radical pairs
    • Jeschke G. 1997 Electron–electron–nuclear three-spin mixing in spin-correlated radical pairs. J. Chem. Phys. 106, 10072–10086. (doi:10.1063/1.474063)
    • (1997) J. Chem. Phys , vol.106 , pp. 10072-10086
    • Jeschke, G.1
  • 103
    • 84884967506 scopus 로고    scopus 로고
    • Proton displacements coupled to primary electron transfer in the Rhodobacter sphaeroides reaction center
    • Eisenmayer TJ, Lasave JA, Monti A, de Groot HJM, Buda F. 2013 Proton displacements coupled to primary electron transfer in the Rhodobacter sphaeroides reaction center. J. Phys. Chem. B 117, 11162–11168. (doi:10.1021/jp401195t)
    • (2013) J. Phys. Chem. B , vol.117 , pp. 11162-11168
    • Eisenmayer, T.J.1    Lasave, J.A.2    Monti, A.3    De Groot, H.4    Buda, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.