메뉴 건너뛰기




Volumn 48, Issue 8, 2015, Pages 2699-2709

A clustering ensemble: Two-level-refined co-association matrix with path-based transformation

Author keywords

Cluster ensembles; Clustering; Co association matrix; Path based measure

Indexed keywords

CLUSTERING ALGORITHMS; LINEAR TRANSFORMATIONS;

EID: 84928279689     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.02.014     Document Type: Article
Times cited : (98)

References (49)
  • 1
    • 84885020665 scopus 로고    scopus 로고
    • Consensus strategy for clustering using rc-images
    • A. Adán, and M. Adán Consensus strategy for clustering using rc-images Pattern Recognit. 47 2014 402 417
    • (2014) Pattern Recognit. , vol.47 , pp. 402-417
    • Adán, A.1    Adán, M.2
  • 2
    • 84888601007 scopus 로고    scopus 로고
    • To improve the quality of cluster ensembles by selecting a subset of base clusters
    • H. Alizadeh, B. Minaei-Bidgoli, and H. Parvin To improve the quality of cluster ensembles by selecting a subset of base clusters J. Exp. Theor. Artif. Intell. 26 1 2013 127 150
    • (2013) J. Exp. Theor. Artif. Intell. , vol.26 , Issue.1 , pp. 127-150
    • Alizadeh, H.1    Minaei-Bidgoli, B.2    Parvin, H.3
  • 4
    • 75749158471 scopus 로고    scopus 로고
    • On voting-based consensus of cluster ensembles
    • H.G. Ayad, and M.S. Kamel On voting-based consensus of cluster ensembles Pattern Recognit. 43 2010 1943 1953
    • (2010) Pattern Recognit. , vol.43 , pp. 1943-1953
    • Ayad, H.G.1    Kamel, M.S.2
  • 5
    • 84896528463 scopus 로고    scopus 로고
    • Weighted ensemble of algorithms for complex data clustering
    • V. Berikov Weighted ensemble of algorithms for complex data clustering Pattern Recognit. Lett. 38 1 2014 99 106
    • (2014) Pattern Recognit. Lett. , vol.38 , Issue.1 , pp. 99-106
    • Berikov, V.1
  • 7
    • 34548016117 scopus 로고    scopus 로고
    • Robust path-based spectral clustering
    • H. Chang, and D.Y. Yeung Robust path-based spectral clustering Pattern Recognit. 41 2008 191 203
    • (2008) Pattern Recognit. , vol.41 , pp. 191-203
    • Chang, H.1    Yeung, D.Y.2
  • 12
    • 84887020048 scopus 로고    scopus 로고
    • Ensemble clustering by means of clustering embedding in vector spaces
    • L. Franek, and X. Jiang Ensemble clustering by means of clustering embedding in vector spaces Pattern Recognit. 47 2014 833 842
    • (2014) Pattern Recognit. , vol.47 , pp. 833-842
    • Franek, L.1    Jiang, X.2
  • 13
    • 33244462619 scopus 로고    scopus 로고
    • Iterative shrinking method for clustering problems
    • P. Fränti, and O. Virmajoki Iterative shrinking method for clustering problems Pattern Recognit. 39 5 2006 761 775
    • (2006) Pattern Recognit. , vol.39 , Issue.5 , pp. 761-775
    • Fränti, P.1    Virmajoki, O.2
  • 16
    • 39449096984 scopus 로고    scopus 로고
    • Flame, a novel fuzzy clustering method for the analysis of dna microarray data
    • L. Fu, and E. Medico Flame, a novel fuzzy clustering method for the analysis of dna microarray data BMC Bioinform. 8 2007 3
    • (2007) BMC Bioinform. , vol.8 , pp. 3
    • Fu, L.1    Medico, E.2
  • 18
    • 0142039770 scopus 로고    scopus 로고
    • Probability density estimation from optimally condensed data samples
    • M. Girolami, and C. He Probability density estimation from optimally condensed data samples IEEE Trans. Pattern Anal. Mach. Intell. 25 2003 1253 1264
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1253-1264
    • Girolami, M.1    He, C.2
  • 19
    • 84862186708 scopus 로고    scopus 로고
    • Ensemble methods for biclustering tasks
    • B. Hanczar, and M. Nadif Ensemble methods for biclustering tasks Pattern Recognit. 45 2012 3938 3949
    • (2012) Pattern Recognit. , vol.45 , pp. 3938-3949
    • Hanczar, B.1    Nadif, M.2
  • 20
    • 34548254914 scopus 로고    scopus 로고
    • Cluster-wise assessment of cluster stability
    • C. Hennig Cluster-wise assessment of cluster stability Comput. Stat. Data Anal. 52 1 2007 258 271
    • (2007) Comput. Stat. Data Anal. , vol.52 , Issue.1 , pp. 258-271
    • Hennig, C.1
  • 21
    • 0000008146 scopus 로고
    • Comparing partitions
    • L. Hubert, and P. Arabie Comparing partitions J. Classif. 2 1985 193 218
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 26
    • 79956344429 scopus 로고    scopus 로고
    • Bagging-based spectral clustering ensemble selection
    • J. Jia, X. Xiao, B. Liu, and L. Jiao Bagging-based spectral clustering ensemble selection Pattern Recognit. Lett. 32 2011 1456 1467
    • (2011) Pattern Recognit. Lett. , vol.32 , pp. 1456-1467
    • Jia, J.1    Xiao, X.2    Liu, B.3    Jiao, L.4
  • 27
    • 0002806618 scopus 로고    scopus 로고
    • Multilevel k-way partitioning scheme for irregular graphs
    • G. Karypis, and V. Kumar Multilevel k-way partitioning scheme for irregular graphs J. Parallel Distrib. Comput. 48 1 1998 96 129
    • (1998) J. Parallel Distrib. Comput. , vol.48 , Issue.1 , pp. 96-129
    • Karypis, G.1    Kumar, V.2
  • 31
    • 80053373556 scopus 로고    scopus 로고
    • A generative dyadic aspect model for evidence accumulation clustering
    • Springer, Berlin Heidelberg
    • A. Lourenço, A.L.N. Fred, M. Figueiredo, A generative dyadic aspect model for evidence accumulation clustering, in: Similarity-Based Pattern Recognition, Springer, Berlin Heidelberg, 2011, pp. 104-116.
    • (2011) Similarity-Based Pattern Recognition , pp. 104-116
    • Lourenço, A.1    Fred, A.L.N.2    Figueiredo, M.3
  • 35
    • 84856498744 scopus 로고    scopus 로고
    • Diclens divisive clustering ensemble with automatic cluster number
    • S. Mimaroglu, and E. Aksehirli Diclens divisive clustering ensemble with automatic cluster number IEEE/ACM Trans. Comput. Biol. Bioinform. 9 2 2012 408 420
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.9 , Issue.2 , pp. 408-420
    • Mimaroglu, S.1    Aksehirli, E.2
  • 36
    • 78649326845 scopus 로고    scopus 로고
    • Combining multiple clusterings using similarity graph
    • S. Mimaroglu, and E. Erdil Combining multiple clusterings using similarity graph Pattern Recognit. 44 2011 694 703
    • (2011) Pattern Recognit. , vol.44 , pp. 694-703
    • Mimaroglu, S.1    Erdil, E.2
  • 41
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • A. Strehl, and J. Ghosh Cluster ensembles - a knowledge reuse framework for combining multiple partitions J. Mach. Learn. Res. 3 2003 583 617
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 45
  • 46
    • 58249083744 scopus 로고    scopus 로고
    • Combining multiple clusterings using similarity graph
    • X. Wang, C. Yang, and J. Zhou Combining multiple clusterings using similarity graph Pattern Recognit. 42 2009 668 675
    • (2009) Pattern Recognit. , vol.42 , pp. 668-675
    • Wang, X.1    Yang, C.2    Zhou, J.3
  • 47
    • 84855895614 scopus 로고    scopus 로고
    • Hybrid cluster ensemble framework based on the random combination of data transformation operators
    • Z. Yu, H.S. Wong, J. You, G. Yu, and G. Han Hybrid cluster ensemble framework based on the random combination of data transformation operators Pattern Recognit. 45 2012 1826 1837
    • (2012) Pattern Recognit. , vol.45 , pp. 1826-1837
    • Yu, Z.1    Wong, H.S.2    You, J.3    Yu, G.4    Han, G.5
  • 48
    • 84961371771 scopus 로고    scopus 로고
    • Fast minimum spanning tree algorithm based on K-means
    • C. Zhong, M. Malinen, D. Miao, and P. Fränti Fast minimum spanning tree algorithm based on K-means Inf. Sci. 295 2015 1 17
    • (2015) Inf. Sci. , vol.295 , pp. 1-17
    • Zhong, C.1    Malinen, M.2    Miao, D.3    Fränti, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.