메뉴 건너뛰기




Volumn 45, Issue 5, 2012, Pages 1826-1837

Hybrid cluster ensemble framework based on the random combination of data transformation operators

Author keywords

Cluster ensemble; Data mining; Data transformation; Gene expression profile

Indexed keywords

CLUSTER ENSEMBLES; CONFIDENCE MEASURE; DATA DIMENSIONS; DATA SAMPLING; DATA SETS; DATA TRANSFORMATION; ENSEMBLE ALGORITHMS; GENE EXPRESSION DATASETS; GENE EXPRESSION PROFILE; HYBRID CLUSTERING; HYBRID CLUSTERS; M-MATRICES; NOISE INJECTION; NORMALIZED CUTS; NUMBER OF DATUM; RANDOM COMBINATION; SUB-SAMPLING; TRANSFORMATION OPERATORS; UCI MACHINE LEARNING REPOSITORY;

EID: 84855895614     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.11.016     Document Type: Article
Times cited : (41)

References (44)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 2
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund, and R.E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences 55 1 1997 119 139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L.I. Kuncheva, and C.J. Whitaker Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy Machine Learning 51 2 2003 181 207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 8
    • 0346076780 scopus 로고    scopus 로고
    • 'Fuzzy' vs 'Non-fuzzy' in combining classifiers designed by boosting
    • L.I. Kuncheva 'Fuzzy' vs 'Non-fuzzy' in combining classifiers designed by boosting IEEE Transactions on Fuzzy Systems 11 6 2003 729 741
    • (2003) IEEE Transactions on Fuzzy Systems , vol.11 , Issue.6 , pp. 729-741
    • Kuncheva, L.I.1
  • 9
    • 77953274042 scopus 로고    scopus 로고
    • Identifying protein kinase-specific phosphorylation sites based on the bagging-adaboost ensemble approach
    • Z. Yu, Z. Deng, H.S. Wong, and L. Tan Identifying protein kinase-specific phosphorylation sites based on the bagging-adaboost ensemble approach IEEE Transactions on NanoBioScience 9 2 2010 132 143
    • (2010) IEEE Transactions on NanoBioScience , vol.9 , Issue.2 , pp. 132-143
    • Yu, Z.1    Deng, Z.2    Wong, H.S.3    Tan, L.4
  • 11
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl, and J. Ghosh Cluster ensembles - a knowledge reuse framework for combining multiple partitions Journal of Machine Learning Research 3 2002 583 617
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 15
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data Machine Learning 52 2003 91 118
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 16
    • 32444447847 scopus 로고    scopus 로고
    • Combining partitions by probabilistic label aggregation
    • T. Lange, J.M. Buhmann, Combining partitions by probabilistic label aggregation, in: KDD 2005, 2005, pp. 147156.
    • (2005) KDD 2005 , pp. 147-156
    • Lange, T.1    Buhmann, J.M.2
  • 17
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of k-means cluster ensembles with respect to random initialization
    • L.I. Kuncheva, and D. Vetrov Evaluation of stability of k-means cluster ensembles with respect to random initialization IEEE Transactions on Pattern Analysis and Machine Intelligence 28 11 2006 1798 1808
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.11 , pp. 1798-1808
    • Kuncheva, L.I.1    Vetrov, D.2
  • 19
    • 19544373948 scopus 로고    scopus 로고
    • Analysis of consensus partition in cluster ensemble
    • A.P. Topchy, M.H.C. Law, A.K. Jain, A.L.N. Fred, Analysis of consensus partition in cluster ensemble, in: ICDM 2004, 2004, pp. 225232.
    • (2004) ICDM 2004 , pp. 225-232
    • Topchy, A.P.1    Law, M.H.C.2    Jain, A.K.3    Fred, A.L.N.4
  • 20
    • 32444447847 scopus 로고    scopus 로고
    • Combining partitions by probabilistic label aggregation
    • T. Lange, J.M. Buhmann, Combining partitions by probabilistic label aggregation, in: SIGKDD 2005, 2005, pp. 147156.
    • (2005) SIGKDD 2005 , pp. 147-156
    • Lange, T.1    Buhmann, J.M.2
  • 21
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub Consensus clustering: a resampling based method for class discovery and visualization of gene expression microarray data Journal of Machine Learning 52 2003 1 2
    • (2003) Journal of Machine Learning , vol.52 , pp. 1-2
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 22
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method to estimate the number of clusters in a dataset
    • S. Dudoit, and J. Fridlyand A prediction-based resampling method to estimate the number of clusters in a dataset Genome Biology 3 7 2002 0036.1 0036.21
    • (2002) Genome Biology , vol.3 , Issue.7 , pp. 00361-003621
    • Dudoit, S.1    Fridlyand, J.2
  • 23
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • S. Dudoit, and J. Fridlyand Bagging to improve the accuracy of a clustering procedure Bioinformatics 19 2003 1090 1099
    • (2003) Bioinformatics , vol.19 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 24
    • 0642367624 scopus 로고    scopus 로고
    • Cluster stability scores for microarray data in cancer studies
    • M. Smolkin, and D. Ghosh Cluster stability scores for microarray data in cancer studies BMC Bioinformatics 4 36 2003
    • (2003) BMC Bioinformatics , vol.4 , Issue.36
    • Smolkin, M.1    Ghosh, D.2
  • 25
    • 33744534403 scopus 로고    scopus 로고
    • Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses
    • A. Bertoni, and G. Valentini Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses Artificial Intelligence in Medicine 37 2 2006 85 109
    • (2006) Artificial Intelligence in Medicine , vol.37 , Issue.2 , pp. 85-109
    • Bertoni, A.1    Valentini, G.2
  • 26
    • 33847265458 scopus 로고    scopus 로고
    • Mosclust: A software library for discovering significant structures in bio-molecular data
    • G. Valentini Mosclust: a software library for discovering significant structures in bio-molecular data Bioinformatics 23 3 2007 387 389
    • (2007) Bioinformatics , vol.23 , Issue.3 , pp. 387-389
    • Valentini, G.1
  • 27
    • 43349083302 scopus 로고    scopus 로고
    • Discovering multi-level structures in bio-molecular data through the Bernstein inequality
    • A. Bertoni, and G. Valentini Discovering multi-level structures in bio-molecular data through the Bernstein inequality BMC Bioinformatics 9 Suppl 2:S4 2008 1 9
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 2-S4 , pp. 1-9
    • Bertoni, A.1    Valentini, G.2
  • 28
    • 36448947175 scopus 로고    scopus 로고
    • Graph based consensus clustering for class discovery from gene expression data
    • Z. Yu, H.S. Wong, and H. Wang Graph based consensus clustering for class discovery from gene expression data Bioinformatics 23 21 2007 2888 2896
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2888-2896
    • Yu, Z.1    Wong, H.S.2    Wang, H.3
  • 29
    • 68949086993 scopus 로고    scopus 로고
    • Class discovery from gene expression data based on perturbation and cluster ensemble
    • Z. Yu, and H.S. Wong Class discovery from gene expression data based on perturbation and cluster ensemble IEEE Transactions on NanoBioscience 8 2 2009 147 160
    • (2009) IEEE Transactions on NanoBioscience , vol.8 , Issue.2 , pp. 147-160
    • Yu, Z.1    Wong, H.S.2
  • 31
    • 70349416588 scopus 로고    scopus 로고
    • Microarray gene cluster identification and annotation through cluster ensemble and em based informative textual summarization
    • X. Hu, E.K. Park, and X. Zhang Microarray gene cluster identification and annotation through cluster ensemble and EM based informative textual summarization IEEE Transactions on Information Technology in Biomedicine 13 5 2009 832 840
    • (2009) IEEE Transactions on Information Technology in Biomedicine , vol.13 , Issue.5 , pp. 832-840
    • Hu, X.1    Park, E.K.2    Zhang, X.3
  • 32
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and its application to times-series prediction
    • T.M. Martinetz, G. Berkovich, and K.J. Schulten Neural-gas network for vector quantization and its application to times-series prediction IEEE Transactions on Neural Networks 4 4 1993 558 569
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, G.2    Schulten, K.J.3
  • 36
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W.M. Rand Objective criteria for the evaluation of clustering methods Journal of the American Statistical Association 66 1971 846 850
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 40
    • 0037165140 scopus 로고    scopus 로고
    • Gene expression-based classification and outcome prediction of central nervous system embryonal tumors
    • S. Pomeroy, P. Tamayo, and M. Gaasenbeek Gene expression-based classification and outcome prediction of central nervous system embryonal tumors Nature 415 6870 2002 436 442
    • (2002) Nature , vol.415 , Issue.6870 , pp. 436-442
    • Pomeroy, S.1    Tamayo, P.2    Gaasenbeek, M.3
  • 42
    • 78649934709 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • A. Frank, A. Asuncion. UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2010 〈 http://archive.ics.uci.edu/ml 〉.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.