메뉴 건너뛰기




Volumn 141, Issue 688, 2015, Pages 945-952

Multivariate ensemble Model Output Statistics using empirical copulas

Author keywords

Empirical copula; Ensemble forecasting; Ensemble post processing; Non homogeneous Gaussian regression; Schaake shuffle

Indexed keywords

CLIMATOLOGY; DISTRIBUTION FUNCTIONS; STATISTICS;

EID: 84928268967     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.2414     Document Type: Article
Times cited : (64)

References (37)
  • 1
    • 72449130454 scopus 로고    scopus 로고
    • Copula based multisite model for daily precipitation simulation
    • Bárdossy A, Pegram GGS. 2009. Copula based multisite model for daily precipitation simulation. Hydrol. Earth Syst. Sci. 13: 2299-2314.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 2299-2314
    • Bárdossy, A.1    Pegram, G.G.S.2
  • 2
    • 34248349570 scopus 로고    scopus 로고
    • Combining spatial statistical and ensemble information in probabilistic weather forecasts
    • Berrocal VJ, Raftery AE, Gneiting T. 2007. Combining spatial statistical and ensemble information in probabilistic weather forecasts. Mon. Weather Rev. 135: 1386-1402.
    • (2007) Mon. Weather Rev. , vol.135 , pp. 1386-1402
    • Berrocal, V.J.1    Raftery, A.E.2    Gneiting, T.3
  • 3
    • 77950950767 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation field forecasting using a two-stage spatial model
    • Berrocal VJ, Raftery AE, Gneiting T. 2008. Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann. Appl. Stat. 2: 1170-1193.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 1170-1193
    • Berrocal, V.J.1    Raftery, A.E.2    Gneiting, T.3
  • 4
    • 84866159248 scopus 로고    scopus 로고
    • Evaluating raw ensembles with the continuous ranked probability score
    • Bröcker J. 2012. Evaluating raw ensembles with the continuous ranked probability score. Q. J. R. Meteorol. Soc. 138: 1611-1617.
    • (2012) Q. J. R. Meteorol. Soc. , vol.138 , pp. 1611-1617
    • Bröcker, J.1
  • 5
    • 1642284456 scopus 로고    scopus 로고
    • The Schaake shuffle: a method for reconstructing space-time variability in forecasted precipitation and temperature fields
    • Clark M, Gangopadhyay S, Hay L, Rajagopalan B, Wilby R. 2004. The Schaake shuffle: a method for reconstructing space-time variability in forecasted precipitation and temperature fields. J. Hydrometeorol. 5: 243-262.
    • (2004) J. Hydrometeorol. , vol.5 , pp. 243-262
    • Clark, M.1    Gangopadhyay, S.2    Hay, L.3    Rajagopalan, B.4    Wilby, R.5
  • 9
    • 84904573379 scopus 로고    scopus 로고
    • Calibrating ensemble reliability whilst preserving spatial structure
    • Flowerdew J. 2014. Calibrating ensemble reliability whilst preserving spatial structure. Tellus A 66: 22662, doi: 10.3402/tellusa.v66.22662.
    • (2014) Tellus A , vol.66 , pp. 22662
    • Flowerdew, J.1
  • 10
    • 4944237404 scopus 로고    scopus 로고
    • Calibrated probabilistic mesoscale weather field forecasting: the geostatistical output perturbation method
    • Gel Y, Raftery AE, Gneiting T. 2004. Calibrated probabilistic mesoscale weather field forecasting: the geostatistical output perturbation method. J. Am. Stat. Assoc. 99: 575-583.
    • (2004) J. Am. Stat. Assoc. , vol.99 , pp. 575-583
    • Gel, Y.1    Raftery, A.E.2    Gneiting, T.3
  • 11
    • 0001737050 scopus 로고
    • The use of Model Output Statistics (MOS) in objective weather forecasting
    • Glahn HR, Lowry DA. 1972. The use of Model Output Statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. 11: 1203-1211.
    • (1972) J. Appl. Meteorol. , vol.11 , pp. 1203-1211
    • Glahn, H.R.1    Lowry, D.A.2
  • 12
    • 20444484849 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
    • Gneiting T, Raftery AE, Westveld A, Goldman T. 2005. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133: 1098-1118.
    • (2005) Mon. Weather Rev. , vol.133 , pp. 1098-1118
    • Gneiting, T.1    Raftery, A.E.2    Westveld, A.3    Goldman, T.4
  • 13
    • 1642306852 scopus 로고    scopus 로고
    • Ensemble reforecasting: improving medium-range forecast skill using retrospective forecasts
    • Hamill TM, Whitaker JS, Wei X. 2004. Ensemble reforecasting: improving medium-range forecast skill using retrospective forecasts. Mon. Weather Rev. 132: 1434-1447.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 1434-1447
    • Hamill, T.M.1    Whitaker, J.S.2    Wei, X.3
  • 16
    • 79251595314 scopus 로고    scopus 로고
    • An evaluation of the progress in reducing heat-related human mortality in major U.S. cities
    • Kalkstein LS, Greene S, Mills DM, Samenow J. 2011. An evaluation of the progress in reducing heat-related human mortality in major U.S. cities. Nat. Hazards 56: 113-129.
    • (2011) Nat. Hazards , vol.56 , pp. 113-129
    • Kalkstein, L.S.1    Greene, S.2    Mills, D.M.3    Samenow, J.4
  • 17
    • 0000311420 scopus 로고
    • The 1995 Chicago heat wave: How likely is a recurrence?
    • Karl TR, Knight RW. 1995. The 1995 Chicago heat wave: How likely is a recurrence? Bull. Am. Meteorol. Soc. 78: 1107-1119.
    • (1995) Bull. Am. Meteorol. Soc. , vol.78 , pp. 1107-1119
    • Karl, T.R.1    Knight, R.W.2
  • 18
    • 84892453006 scopus 로고    scopus 로고
    • Heteroscedastic extended logistic regression for postprocessing of ensemble guidance
    • Messner JW, Mayr GJ, Zeileis A, Wilks DS. 2014. Heteroscedastic extended logistic regression for postprocessing of ensemble guidance. Mon. Weather Rev. 142: 448-456.
    • (2014) Mon. Weather Rev. , vol.142 , pp. 448-456
    • Messner, J.W.1    Mayr, G.J.2    Zeileis, A.3    Wilks, D.S.4
  • 19
    • 84879201434 scopus 로고    scopus 로고
    • Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas
    • Möller A, Lenkoski A, Thorarinsdottir TL. 2013. Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. Q. J. R. Meteorol. Soc. 139: 982-991.
    • (2013) Q. J. R. Meteorol. Soc. , vol.139 , pp. 982-991
    • Möller, A.1    Lenkoski, A.2    Thorarinsdottir, T.L.3
  • 20
    • 0000918735 scopus 로고
    • A new vector partition of the probability score
    • Murphy AH. 1973. A new vector partition of the probability score. J. Appl. Meteorol. 12: 595-600.
    • (1973) J. Appl. Meteorol. , vol.12 , pp. 595-600
    • Murphy, A.H.1
  • 22
    • 84864281578 scopus 로고    scopus 로고
    • Adaptive calibration of (u,v)-wind ensemble forecasts
    • Pinson P. 2012. Adaptive calibration of (u, v)-wind ensemble forecasts. Q. J. R. Meteorol. Soc. 138: 1273-1284.
    • (2012) Q. J. R. Meteorol. Soc. , vol.138 , pp. 1273-1284
    • Pinson, P.1
  • 23
    • 84891809865 scopus 로고    scopus 로고
    • Wind energy: forecasting challenges for its operational management
    • Pinson P. 2013. Wind energy: forecasting challenges for its operational management. Stat. Sci. 28: 564-585.
    • (2013) Stat. Sci. , vol.28 , pp. 564-585
    • Pinson, P.1
  • 24
    • 74149093707 scopus 로고    scopus 로고
    • From probabilistic forecasts to statistical scenarios of short-term wind power production
    • Pinson P, Madsen H, Nielsen HA, Papaefthymiou G, Klöckl B. 2009. From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 12: 51-62.
    • (2009) Wind Energy , vol.12 , pp. 51-62
    • Pinson, P.1    Madsen, H.2    Nielsen, H.A.3    Papaefthymiou, G.4    Klöckl, B.5
  • 26
    • 84884859040 scopus 로고    scopus 로고
    • Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting
    • Robertson DE, Shrestha DL, Wang QJ. 2013. Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci. 17: 3587-3603.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , pp. 3587-3603
    • Robertson, D.E.1    Shrestha, D.L.2    Wang, Q.J.3
  • 27
    • 0006045281 scopus 로고
    • The heat index "equation" (or, more than you ever wanted to know about heat index)
    • U.S. National Weather Service Technical Attachment SR 90-23.(accessed 06 March 2014).
    • Rothfusz LP. 1990. 'The heat index "equation" (or, more than you ever wanted to know about heat index)'. U.S. National Weather Service Technical Attachment SR 90-23. http://www.srh.noaa.gov/images/ffc/pdf/ta_htindx.PDF (accessed 06 March 2014).
    • (1990)
    • Rothfusz, L.P.1
  • 28
    • 84857969929 scopus 로고    scopus 로고
    • Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts
    • Roulin E, Vannitsem S. 2012. Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Weather Rev. 140: 874-888.
    • (2012) Mon. Weather Rev. , vol.140 , pp. 874-888
    • Roulin, E.1    Vannitsem, S.2
  • 29
    • 68049105110 scopus 로고    scopus 로고
    • On the distributional transform, Sklar's theorem, and the empirical copula process
    • Rüschendorf L. 2009. On the distributional transform, Sklar's theorem, and the empirical copula process. J. Statist. Plann. Inference 139: 3921-3927.
    • (2009) J. Statist. Plann. Inference , vol.139 , pp. 3921-3927
    • Rüschendorf, L.1
  • 30
    • 84891800962 scopus 로고    scopus 로고
    • Uncertainty quantification in complex simulation models using ensemble copula coupling
    • Schefzik R, Thorarinsdottir TL, Gneiting T. 2013. Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci. 28: 616-640.
    • (2013) Stat. Sci. , vol.28 , pp. 616-640
    • Schefzik, R.1    Thorarinsdottir, T.L.2    Gneiting, T.3
  • 31
    • 54949105089 scopus 로고    scopus 로고
    • Multivariate non-normally distributed random variables in climate research-introduction to the copula approach
    • Schölzel C, Friederichs P. 2008. Multivariate non-normally distributed random variables in climate research-introduction to the copula approach. Nonlinear Processes Geophys. 15: 761-772, doi: 10.5194/npg-15-761-2008.
    • (2008) Nonlinear Processes Geophys. , vol.15 , pp. 761-772
    • Schölzel, C.1    Friederichs, P.2
  • 33
    • 0021638475 scopus 로고
    • A universal scale of apparent temperature
    • Steadman RG. 1984. A universal scale of apparent temperature. J. Clim. Appl. Meteorol. 23: 1674-1687.
    • (1984) J. Clim. Appl. Meteorol. , vol.23 , pp. 1674-1687
    • Steadman, R.G.1
  • 34
    • 84882956988 scopus 로고    scopus 로고
    • Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales
    • Verkade JS, Brown JD, Reggiani P, Weerts AH. 2013. Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrol. 501: 73-91.
    • (2013) J. Hydrol. , vol.501 , pp. 73-91
    • Verkade, J.S.1    Brown, J.D.2    Reggiani, P.3    Weerts, A.H.4
  • 35
    • 33747806974 scopus 로고    scopus 로고
    • Comparison of ensemble-MOS methods in the Lorenz '96 setting
    • Wilks DS. 2006. Comparison of ensemble-MOS methods in the Lorenz '96 setting. Meteorol. Appl. 13: 243-256.
    • (2006) Meteorol. Appl. , vol.13 , pp. 243-256
    • Wilks, D.S.1
  • 37
    • 34447309549 scopus 로고    scopus 로고
    • Comparison of ensemble-MOS methods using GFS reforecasts
    • Wilks DS, Hamill TM. 2007. Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Weather Rev. 135: 2379-2390.
    • (2007) Mon. Weather Rev. , vol.135 , pp. 2379-2390
    • Wilks, D.S.1    Hamill, T.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.