메뉴 건너뛰기




Volumn 28, Issue 4, 2013, Pages 564-585

Wind energy: Forecasting challenges for its operational management

Author keywords

Decision making; Electricity markets; Forecast verification; Gaussian copula; Linear and nonlinear regression; Parametric and nonparametric predictive densities; Power systems operations; Quantile regression; Renewable energy; Space time trajectories; Stochastic optimization

Indexed keywords


EID: 84891809865     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-STS445     Document Type: Article
Times cited : (292)

References (83)
  • 1
    • 84891584948 scopus 로고    scopus 로고
    • Wind Power in Power Systems, 2nd ed
    • Wiley, Chichester.
    • ACKERMANN, T. (2012). Wind Power in Power Systems, 2nd ed. Wiley, Chichester.
    • (2012)
    • Ackermann, T.1
  • 2
    • 70350707612 scopus 로고    scopus 로고
    • Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting
    • BESSA, R. J., MIRANDA, V. and GAMA, J. (2009). Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE T. Power Syst. 24 1657-1666.
    • (2009) IEEE T. Power Syst. , vol.24 , pp. 1657-1666
    • Bessa, R.J.1    Miranda, V.2    Gama, J.3
  • 3
    • 0003776432 scopus 로고
    • Reliability Evaluation of Power Systems
    • Plenum Press, London.
    • BILLINTON, R. and ALLAN, R. N. (1984). Reliability Evaluation of Power Systems. Plenum Press, London.
    • (1984)
    • Billinton, R.1    Allan, R.N.2
  • 5
    • 84872946665 scopus 로고    scopus 로고
    • Forecasting ramps of wind power production with numerical weather prediction ensembles
    • BOSSAVY, A., GIRARD, R. and KARINIOTAKIS, G. (2013). Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy 16 51-63.
    • (2013) Wind Energy , vol.16 , pp. 51-63
    • Bossavy, A.1    Girard, R.2    Kariniotakis, G.3
  • 7
    • 14344255817 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts using local quantile regression
    • BREMNES, J. B. (2004). Probabilistic wind power forecasts using local quantile regression. Wind Energy 7 47-54.
    • (2004) Wind Energy , vol.7 , pp. 47-54
    • Bremnes, J.B.1
  • 8
    • 0021479290 scopus 로고
    • Time series models to simulate and forecast wind speed and wind power
    • BROWN, B. G., KATZ, R. W. andMURPHY, A. M. (1984). Time series models to simulate and forecast wind speed and wind power. J. Appl. Meteor. 23 1184-1195.
    • (1984) J. Appl. Meteor. , vol.23 , pp. 1184-1195
    • Brown, B.G.1    Katz, R.W.2    Murphy, A.M.3
  • 9
    • 0345693800 scopus 로고
    • Space-time modeling with applications to regional forecasting
    • CLIFF, A. D. and ORD, J. K. (1984). Space-time modeling with applications to regional forecasting. Trans. Inst. Br. Geogr. 66 119-128.
    • (1984) Trans. Inst. Br. Geogr. , vol.66 , pp. 119-128
    • Cliff, A.D.1    Ord, J.K.2
  • 10
    • 80052266190 scopus 로고    scopus 로고
    • Decision-Making under Uncertainty in Electricity Markets
    • Springer, New York.
    • CONEJO, A., CARRION, M. and MORALES, J. M. (2010). Decision-Making under Uncertainty in Electricity Markets. Springer, New York.
    • (2010)
    • Conejo, A.1    Carrion, M.2    Morales, J.M.3
  • 11
    • 0021639076 scopus 로고
    • Review of Weibull statistics for estimation of wind speed distributions
    • CONRADSEN, K., NIELSEN, L. B. and PRAHM, L. P. (1984). Review of Weibull statistics for estimation of wind speed distributions. J. Appl. Meteor. 23 1173-1183.
    • (1984) J. Appl. Meteor. , vol.23 , pp. 1173-1183
    • Conradsen, K.1    Nielsen, L.B.2    Prahm, L.P.3
  • 12
    • 18944371663 scopus 로고    scopus 로고
    • A new approach to quantify reserve demand in systems with significant installed wind capacity
    • DOHERTY, R. and O'MALLEY, M. (2005). A new approach to quantify reserve demand in systems with significant installed wind capacity. IEEE T. Power Syst. 20 587-595.
    • (2005) IEEE T. Power Syst. , vol.20 , pp. 587-595
    • Doherty, R.1    O'malley, M.2
  • 14
    • 0347985230 scopus 로고    scopus 로고
    • Aggregation of space-time processes
    • MR2030964
    • GIACOMINI, R. and GRANGER, C. W. J. (2004). Aggregation of space-time processes. J. Econometrics 118 7-26. MR2030964
    • (2004) J. Econometrics , vol.118 , pp. 7-26
    • Giacomini, R.1    Granger, C.W.J.2
  • 15
    • 13844260429 scopus 로고    scopus 로고
    • The state-of-the-art in shortterm prediction of wind power: A literature overview, 2nd ed
    • Technical report. Available at orbit.dtu.dk.
    • GIEBEL, G., BROWNSWORD, R., KARINIOTAKIS, G., DENHARD, M. andDRAXL, C. (2011). The state-of-the-art in shortterm prediction of wind power: A literature overview, 2nd ed. Technical report. Available at orbit.dtu.dk.
    • (2011)
    • Giebel, G.1    Brownsword, R.2    Kariniotakis, G.3    Denhard, M.4    Draxl, C.5
  • 16
    • 85132635640 scopus 로고    scopus 로고
    • Spatio-temporal propagation of wind power forecast errors
    • Wind Energy. To appear.
    • GIRARD, R. and ALLARD, D. (2013). Spatio-temporal propagation of wind power forecast errors. Wind Energy. To appear.
    • (2013)
    • Girard, R.1    Allard, D.2
  • 17
    • 78650940664 scopus 로고    scopus 로고
    • Quantiles as optimal point forecasts
    • GNEITING, T. (2010). Quantiles as optimal point forecasts. Int. J. Forecasting 27 197-207.
    • (2010) Int. J. Forecasting , vol.27 , pp. 197-207
    • Gneiting, T.1
  • 19
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • MR2345548
    • GNEITING, T. and RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359-378. MR2345548
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 20
    • 33748872845 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting at the stateline wind energy center: The regime-switching space- time method
    • MR2324108
    • GNEITING, T., LARSON, K., WESTRICK, K., GENTON, M. G. and ALDRICH, E. (2006). Calibrated probabilistic forecasting at the stateline wind energy center: The regime-switching space- time method. J. Amer. Statist. Assoc. 101 968-979. MR2324108
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 968-979
    • Gneiting, T.1    Larson, K.2    Westrick, K.3    Genton, M.G.4    Aldrich, E.5
  • 21
    • 48349105056 scopus 로고    scopus 로고
    • Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds
    • MR2434318
    • GNEITING, T., STANBERRY, L. I., GRIMIT, E. P., HELD, L. and JOHNSON, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. TEST 17 211-235. MR2434318
    • (2008) TEST , vol.17 , pp. 211-235
    • Gneiting, T.1    Stanberry, L.I.2    Grimit, E.P.3    Held, L.4    Johnson, N.A.5
  • 22
    • 67349154089 scopus 로고    scopus 로고
    • Electric load forecasting methods: Tools for decision making
    • HAHN, H., MEYER-NIEBERG, S. and PICKL, S. (2009). Electric load forecasting methods: Tools for decision making. European J. Oper. Res. 199 902-907.
    • (2009) European J. Oper. Res. , vol.199 , pp. 902-907
    • Hahn, H.1    Meyer-Nieberg, S.2    Pickl, S.3
  • 23
    • 0001342006 scopus 로고
    • A new approach to the economic analysis of nonstationary time series and the business cycle
    • MR0996941
    • HAMILTON, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57 357-384. MR0996941
    • (1989) Econometrica , vol.57 , pp. 357-384
    • Hamilton, J.D.1
  • 24
    • 0001917942 scopus 로고
    • Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource (with discussion)
    • HASLETT, J. and RAFTERY, A. E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource (with discussion). J. R. Stat. Soc. Ser. C Appl. Stat. 38 1-50.
    • (1989) J. R. Stat. Soc. Ser. C Appl. Stat. , vol.38 , pp. 1-50
    • Haslett, J.1    Raftery, A.E.2
  • 25
    • 77952557101 scopus 로고    scopus 로고
    • Powering up with space-time wind forecasting
    • MR2757195
    • HERING, A. S. and GENTON, M. G. (2010). Powering up with space-time wind forecasting. J. Amer. Statist. Assoc. 105 92- 104. MR2757195
    • (2010) J. Amer. Statist. Assoc. , vol.105
    • Hering, A.S.1    Genton, M.G.2
  • 26
    • 81555213027 scopus 로고    scopus 로고
    • Comparing spatial predictions
    • MR2850473
    • HERING, A. S. and GENTON, M. G. (2011). Comparing spatial predictions. Technometrics 53 414-425. MR2850473
    • (2011) Technometrics , vol.53 , pp. 414-425
    • Hering, A.S.1    Genton, M.G.2
  • 27
    • 1942454839 scopus 로고    scopus 로고
    • Modeling transport effects on ground-level ozone using a non-stationary space-time model
    • HUANG, H. C. and HSU, N. J. (2004). Modeling transport effects on ground-level ozone using a non-stationary space-time model. Environmetrics 15 251-268.
    • (2004) Environmetrics , vol.15 , pp. 251-268
    • Huang, H.C.1    Hsu, N.J.2
  • 28
    • 84859596365 scopus 로고    scopus 로고
    • Using conditional kernel density estimation for wind power density forecasting
    • MR2949342
    • JEON, J. and TAYLOR, J. W. (2012). Using conditional kernel density estimation for wind power density forecasting. J. Amer. Statist. Assoc. 107 66-79. MR2949342
    • (2012) J. Amer. Statist. Assoc. , vol.107 , pp. 66-79
    • Jeon, J.1    Taylor, J.W.2
  • 29
  • 30
    • 79958280724 scopus 로고    scopus 로고
    • Comparing the costs of intermittent and dispatchable electricity generating technologies
    • JOSKOW, P. L. (2011). Comparing the costs of intermittent and dispatchable electricity generating technologies. Amer. Econ. Rev. 100 238-241.
    • (2011) Amer. Econ. Rev. , vol.100 , pp. 238-241
    • Joskow, P.L.1
  • 32
    • 0000273843 scopus 로고
    • Regression quantiles
    • MR0474644
    • KOENKER, R. and BASSETT, G. JR. (1978). Regression quantiles. Econometrica 46 33-50. MR0474644
    • (1978) Econometrica , vol.46 , pp. 33-50
    • Koenker, R.1    Bassett, G.2
  • 33
    • 0033086885 scopus 로고    scopus 로고
    • Short-term prediction of the power production from wind farms
    • LANDBERG, L. (1999). Short-term prediction of the power production from wind farms. J. Wind Eng. Ind. Aerodyn. 80 207-220.
    • (1999) J. Wind Eng. Ind. Aerodyn. , vol.80 , pp. 207-220
    • Landberg, L.1
  • 34
    • 0028667890 scopus 로고
    • Short-term prediction of local wind conditions
    • LANDBERG, L. andWATSON, S. J. (1994). Short-term prediction of local wind conditions. Bound.-Layer Meteor. 70 171-195.
    • (1994) Bound.-Layer Meteor. , vol.70 , pp. 171-195
    • Landberg, L.1    Watson, S.J.2
  • 35
    • 19144369129 scopus 로고    scopus 로고
    • On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors
    • LANGE, M. (2005). On the uncertainty of wind power predictions-Analysis of the forecast accuracy and statistical distribution of errors. J. Solar Energ.-T. ASME 127 177-184.
    • (2005) J. Solar Energ.-T. ASME , vol.127 , pp. 177-184
    • Lange, M.1
  • 36
    • 84892009922 scopus 로고    scopus 로고
    • Physical Approach to Short- Term Wind Power Prediction
    • Springer, Berlin.
    • LANGE, M. and FOCKEN, U. (2006). Physical Approach to Short- Term Wind Power Prediction. Springer, Berlin.
    • (2006)
    • Lange, M.1    Focken, U.2
  • 37
    • 84870266450 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts: From aggregated approach to spatiotemporal models
    • Ph.D. thesis, Univ. Oxford, Oxford, UK.
    • LAU, A. (2011). Probabilistic wind power forecasts: From aggregated approach to spatiotemporal models. Ph.D. thesis, Univ. Oxford, Oxford, UK.
    • (2011)
    • Lau, A.1
  • 38
    • 80052141253 scopus 로고    scopus 로고
    • Approaches for multi-step density forecasts with application to aggregated wind power
    • MR2758330
    • LAU, A. and MCSHARRY, P. (2010). Approaches for multi-step density forecasts with application to aggregated wind power. Ann. Appl. Stat. 4 1311-1341. MR2758330
    • (2010) Ann. Appl. Stat. , vol.4 , pp. 1311-1341
    • Lau, A.1    Mcsharry, P.2
  • 39
    • 84902400143 scopus 로고    scopus 로고
    • Future Energy: Improved, Sustainable and Clean Options for Our Planet
    • Elsevier, Amsterdam.
    • LETCHER, T. M. (2008). Future Energy: Improved, Sustainable and Clean Options for Our Planet. Elsevier, Amsterdam.
    • (2008)
    • Letcher, T.M.1
  • 40
    • 39549083006 scopus 로고    scopus 로고
    • Ensemble forecasting
    • MR2400226
    • LEUTBECHER, M. and PALMER, T. N. (2008). Ensemble forecasting. J. Comput. Phys. 227 3515-3539. MR2400226
    • (2008) J. Comput. Phys. , vol.227 , pp. 3515-3539
    • Leutbecher, M.1    Palmer, T.N.2
  • 41
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach
    • MR2853727
    • LINDGREN, F., RUE, H. and LINDSTRöM, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 423-498. MR2853727
    • (2011) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.73 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 42
    • 7444222679 scopus 로고    scopus 로고
    • A comparison of value-at-risk models in finance
    • In Risk Measures for the 21st Century (G. Szegö, ed.) . Wiley, Chichester.
    • MANGANELLI, S. and ENGLE, R. F. (2004). A comparison of value-at-risk models in finance. In Risk Measures for the 21st Century (G. Szegö, ed.) 123-143. Wiley, Chichester.
    • (2004) , pp. 123-143
    • Manganelli, S.1    Engle, R.F.2
  • 43
    • 79955525885 scopus 로고    scopus 로고
    • Setting the operating reserve using probabilistic wind power forecasts
    • MATOS, M. A. and BESSA, R. J. (2010). Setting the operating reserve using probabilistic wind power forecasts. IEEE T. Power Syst. 26 594-603.
    • (2010) IEEE T. Power Syst. , vol.26 , pp. 594-603
    • Matos, M.A.1    Bessa, R.J.2
  • 44
    • 84879201434 scopus 로고    scopus 로고
    • Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas
    • MöLLER, A., LENKOSKI, A. and THORARINSDOTTIR, T. L. (2013). Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. Q. J. Royal Met. Soc. 139 982-991.
    • (2013) Q. J. Royal Met. Soc. , vol.139 , pp. 982-991
    • Möller, A.1    Lenkoski, A.2    Thorarinsdottir, T.L.3
  • 46
    • 14344258624 scopus 로고    scopus 로고
    • Wind power and the conditions at a liberalized power market
    • MORTHORST, P. E. (2003). Wind power and the conditions at a liberalized power market. Wind Energy 6 297-308.
    • (2003) Wind Energy , vol.6 , pp. 297-308
    • Morthorst, P.E.1
  • 47
    • 84991234116 scopus 로고    scopus 로고
    • Variability of wind and wind power
    • In Wind Power (S. M. Muyeen Vukovar, ed.) . Intech Open, Rijeka, Croatia.
    • MUR AMADA, J. and BAYOD RúJULA, A. (2010). Variability of wind and wind power. In Wind Power (S. M. Muyeen Vukovar, ed.) 289-320. Intech Open, Rijeka, Croatia.
    • (2010) , pp. 289-320
    • Mur Amada, J.1    Bayod Rújula, A.2
  • 48
    • 0027706813 scopus 로고
    • What is a good forecast? An essay on the nature of goodness in weather forecasting
    • MURPHY, A. H. (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting 8 281-293.
    • (1993) Wea. Forecasting , vol.8 , pp. 281-293
    • Murphy, A.H.1
  • 49
    • 0023486961 scopus 로고
    • A general framework for forecast verification
    • MURPHY, A. H. and WINKLER, R. L. (1987). A general framework for forecast verification. Mon. Wea. Rev. 115 1330-1338.
    • (1987) Mon. Wea. Rev. , vol.115 , pp. 1330-1338
    • Murphy, A.H.1    Winkler, R.L.2
  • 50
    • 0004156740 scopus 로고    scopus 로고
    • An Introduction to Copulas, 2nd ed
    • Springer, New York. MR2197664
    • NELSEN, R. B. (2006). An Introduction to Copulas, 2nd ed. Springer, New York. MR2197664
    • (2006)
    • Nelsen, R.B.1
  • 51
    • 74149083045 scopus 로고    scopus 로고
    • Online prediction and control in nonlinear stochastic systems
    • Ph.D. thesis, Dept. Informatics and Mathematical Modelling, Technical Univ. Denmark.
    • NIELSEN, T. S. (2002). Online prediction and control in nonlinear stochastic systems. Ph.D. thesis, Dept. Informatics and Mathematical Modelling, Technical Univ. Denmark.
    • (2002)
    • Nielsen, T.S.1
  • 52
    • 33244496469 scopus 로고    scopus 로고
    • Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts
    • NIELSEN, H. A.,MADSEN, H. and NIELSEN, T. S. (2006). Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts. Wind Energy 9 95-108.
    • (2006) Wind Energy , vol.9 , pp. 95-108
    • Nielsen, H.A.1    Madsen, H.2    Nielsen, T.S.3
  • 53
    • 60149087287 scopus 로고    scopus 로고
    • Estimating the spinning reserve requirements in systems with significant wind power generation penetration
    • ORTEGA-VAZQUEZ, M. A. and KIRSCHEN, D. S. (2009). Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE T. Power Syst. 24 114-124.
    • (2009) IEEE T. Power Syst. , vol.24 , pp. 114-124
    • Ortega-Vazquez, M.A.1    Kirschen, D.S.2
  • 54
    • 84862160611 scopus 로고    scopus 로고
    • Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction
    • PALMER, T. N. (2012). Towards the probabilistic Earth-system simulator: A vision for the future of climate and weather prediction. Quart. J. Royal Met. Soc. 665 841-861.
    • (2012) Quart. J. Royal Met. Soc. , vol.665 , pp. 841-861
    • Palmer, T.N.1
  • 55
    • 84880066582 scopus 로고    scopus 로고
    • Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network
    • MR3079732
    • PAPAVASILIOU, A. and OREN, S. S. (2013). Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network. Oper. Res. 61 578-592. MR3079732
    • (2013) Oper. Res. , vol.61 , pp. 578-592
    • Papavasiliou, A.1    Oren, S.S.2
  • 57
    • 84864110510 scopus 로고    scopus 로고
    • Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions
    • MR2960738
    • PINSON, P. (2012). Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions. J. R. Stat. Soc. Ser. C Appl. Stat. 61 555-576. MR2960738
    • (2012) J. R. Stat. Soc. Ser. C Appl. Stat. , vol.61 , pp. 555-576
    • Pinson, P.1
  • 58
    • 34548047478 scopus 로고    scopus 로고
    • Trading wind generation from short-term probabilistic forecasts of wind power
    • PINSON, P., CHEVALLIER, C. and KARINIOTAKIS, G. (2007). Trading wind generation from short-term probabilistic forecasts of wind power. IEEE T. Power Syst. 22 1148-1156.
    • (2007) IEEE T. Power Syst. , vol.22 , pp. 1148-1156
    • Pinson, P.1    Chevallier, C.2    Kariniotakis, G.3
  • 59
    • 84861664310 scopus 로고    scopus 로고
    • Evaluating the quality of scenarios of short-term wind power generation
    • PINSON, P. and GIRARD, R. (2012). Evaluating the quality of scenarios of short-term wind power generation. Appl. Energ. 96 12-20.
    • (2012) Appl. Energ. , vol.96 , pp. 12-20
    • Pinson, P.1    Girard, R.2
  • 60
    • 77958487600 scopus 로고    scopus 로고
    • Conditional prediction intervals of wind power generation
    • PINSON, P. and KARINIOTAKIS, G. (2010). Conditional prediction intervals of wind power generation. IEEE T. Power Syst. 25 1845-1856.
    • (2010) IEEE T. Power Syst. , vol.25 , pp. 1845-1856
    • Pinson, P.1    Kariniotakis, G.2
  • 61
    • 63049105616 scopus 로고    scopus 로고
    • Ensemble-based probabilistic forecasting at Horns Rev
    • PINSON, P. andMADSEN, H. (2009). Ensemble-based probabilistic forecasting at Horns Rev. Wind Energy 12 137-155.
    • (2009) Wind Energy , vol.12 , pp. 137-155
    • Pinson, P.1    Madsen, H.2
  • 62
    • 84861064867 scopus 로고    scopus 로고
    • Adaptive modelling and forecasting of offshore wind power fluctuations with Markovswitching autoregressive models
    • MR2924797
    • PINSON, P. and MADSEN, H. (2012). Adaptive modelling and forecasting of offshore wind power fluctuations with Markovswitching autoregressive models. J. Forecast. 31 281-313. MR2924797
    • (2012) J. Forecast. , vol.31 , pp. 281-313
    • Pinson, P.1    Madsen, H.2
  • 63
    • 77249106476 scopus 로고    scopus 로고
    • Reliability diagrams for nonparametric density forecasts of continuous variables: Accounting for serial correlation
    • PINSON, P., MCSHARRY, P. E. and MADSEN, H. (2010). Reliability diagrams for nonparametric density forecasts of continuous variables: Accounting for serial correlation. Quart. J. Royal Met. Soc. 136 77-90.
    • (2010) Quart. J. Royal Met. Soc. , vol.136 , pp. 77-90
    • Pinson, P.1    Mcsharry, P.E.2    Madsen, H.3
  • 64
    • 74149093707 scopus 로고    scopus 로고
    • From probabilistic forecasts to statistical scenarios of short-term wind power production
    • PINSON, P., NIELSEN, H. A., MADSEN, H., PAPAEFTHYMIOU, G. and KLöCKL, B. (2009). From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 12 51-62.
    • (2009) Wind Energy , vol.12 , pp. 51-62
    • Pinson, P.1    Nielsen, H.A.2    Madsen, H.3    Papaefthymiou, G.4    Klöckl, B.5
  • 65
    • 0004124101 scopus 로고
    • Applied Statistical Decision Theory
    • Division of Research, Harvard Business School, Boston.
    • RAIFFA, H. and SCHAIFER, R. (1961). Applied Statistical Decision Theory. Division of Research, Harvard Business School, Boston.
    • (1961)
    • Raiffa, H.1    Schaifer, R.2
  • 66
    • 55349126757 scopus 로고    scopus 로고
    • Using temperature and state transitions to forecast wind speed
    • REIKARD, G. (2008). Using temperature and state transitions to forecast wind speed. Wind Energy 11 431-443.
    • (2008) Wind Energy , vol.11 , pp. 431-443
    • Reikard, G.1
  • 67
    • 0036555398 scopus 로고    scopus 로고
    • Using medium-range weather forecasts to improve the value of wind energy production
    • ROULSTON, M. S., KAPLAN, D. T., HARDENBERG, J. and SMITH, L. A. (2003). Using medium-range weather forecasts to improve the value of wind energy production. Renew. Energ. 28 585-602.
    • (2003) Renew. Energ. , vol.28 , pp. 585-602
    • Roulston, M.S.1    Kaplan, D.T.2    Hardenberg, J.3    Smith, L.A.4
  • 68
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • SIDERATOS, G. and HATZIARGYRIOU, N. D. (2007). An advanced statistical method for wind power forecasting. IEEE T. Power Syst. 22 258-265.
    • (2007) IEEE T. Power Syst. , vol.22 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 69
    • 84867988966 scopus 로고    scopus 로고
    • Probabilistic wind power forecasting using radial basis function neural networks
    • SIDERATOS, G. and HATZIARGYRIOU, N. D. (2012). Probabilistic wind power forecasting using radial basis function neural networks. IEEE T. Power Syst. 27 1788-1796.
    • (2012) IEEE T. Power Syst. , vol.27 , pp. 1788-1796
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 70
    • 0033179953 scopus 로고    scopus 로고
    • The regulating power market on the Nordic power exchange Nord Pool: An econometric analysis
    • SKYTTE, K. (1999). The regulating power market on the Nordic power exchange Nord Pool: An econometric analysis. Energ. Econ. 21 295-308.
    • (1999) Energ. Econ. , vol.21 , pp. 295-308
    • Skytte, K.1
  • 72
    • 70049094192 scopus 로고    scopus 로고
    • Wind power density forecasting using ensemble predictions and time series models
    • TAYLOR, J.W.,MCSHARRY, P. E. and BUIZZA, R. (1999). Wind power density forecasting using ensemble predictions and time series models. IEEE T. Energy Conver. 24 775-782.
    • (1999) IEEE T. Energy Conver. , vol.24 , pp. 775-782
    • Taylor, J.W.1    Mcsharry, P.E.2    Buizza, R.3
  • 73
    • 0030807223 scopus 로고    scopus 로고
    • Autoregressive conditional heteroscedasticity in daily wind speed measurements
    • TOL, R. S. J. (1997). Autoregressive conditional heteroscedasticity in daily wind speed measurements. Theo. Appl. Clim. 56 113-122.
    • (1997) Theo. Appl. Clim. , vol.56 , pp. 113-122
    • Tol, R.S.J.1
  • 74
    • 84855573128 scopus 로고    scopus 로고
    • Threshold models in time series analysis-30 years on
    • MR2812802
    • TONG, H. (2011). Threshold models in time series analysis-30 years on. Stat. Interface 4 107-118. MR2812802
    • (2011) Stat.Interface , vol.4 , pp. 107-118
    • Tong, H.1
  • 75
    • 78049463083 scopus 로고    scopus 로고
    • Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness
    • VAUTARD, R., CATTIAUX, J., YIOU, P., THéPAUT, J. N. and CIAIS, P. (2010). Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 3 756-761.
    • (2010) Nat. Geosci. , vol.3 , pp. 756-761
    • Vautard, R.1    Cattiaux, J.2    Yiou, P.3    Thépaut, J.N.4    Ciais, P.5
  • 76
    • 77953507123 scopus 로고    scopus 로고
    • Resolving nonstationary spectral information in wind speed time series using the Hilbert-Huang transform
    • VINCENT, C. L., GIEBEL, G., PINSON, P. and MADSEN, H. (2010). Resolving nonstationary spectral information in wind speed time series using the Hilbert-Huang transform. J. Appl. Meteor. Clim. 49 253-267.
    • (2010) J. Appl. Meteor. Clim. , vol.49 , pp. 253-267
    • Vincent, C.L.1    Giebel, G.2    Pinson, P.3    Madsen, H.4
  • 77
    • 0345388996 scopus 로고    scopus 로고
    • Chi-squared tests of interval and density forecasts, and the bank of England's fan charts
    • WALLIS, K. F. (2003). Chi-squared tests of interval and density forecasts, and the bank of England's fan charts. Int. J. Forecasting 19 165-175.
    • (2003) Int. J. Forecasting , vol.19 , pp. 165-175
    • Wallis, K.F.1
  • 78
    • 84961255702 scopus 로고    scopus 로고
    • Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach
    • Wiley, New York.
    • WERON, R. (2006). Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach. Wiley, New York.
    • (2006)
    • Weron, R.1
  • 79
    • 84891816580 scopus 로고    scopus 로고
    • Regulating competition in wholesale electricity supply
    • In Economic Regulation and Its Reform: What Have We Learned? (N. L. Rose, ed.). Univ. Chicago Press. To appear.
    • WOLAK, F. A. (2013). Regulating competition in wholesale electricity supply. In Economic Regulation and Its Reform: What Have We Learned? (N. L. Rose, ed.). Univ. Chicago Press. To appear.
    • (2013)
    • Wolak, F.A.1
  • 80
    • 84878223744 scopus 로고    scopus 로고
    • 2012-Half-year report
    • WWEA (WORLD WIND ENERGY ASSOCIATION) Technical report. Available at
    • WWEA WORLD WIND ENERGY ASSOCIATION (2012). 2012-Half-year report. Technical report. Available at http:// www.wwindea.org/webimages/Half-year_report_2012.pdf.
    • (2012)
  • 81
    • 84859612787 scopus 로고    scopus 로고
    • Short-term wind speed forecasting for power system operations
    • MR2990340
    • ZHU, X. andGENTON, M. G. (2012). Short-term wind speed forecasting for power system operations. Int. Stat. Rev. 80 2-23. MR2990340
    • (2012) Int. Stat. Rev. , vol.80 , pp. 2-23
    • Zhu, X.1    Genton, M.G.2
  • 82
    • 84884983890 scopus 로고    scopus 로고
    • Trading wind energy based on probabilistic forecasts of both wind generation and market quantities
    • ZUGNO, M., JóNSSON, T. and PINSON, P. (2013). Trading wind energy based on probabilistic forecasts of both wind generation and market quantities. Wind Energy. 16 909-926.
    • (2013) Wind Energy. , vol.16 , pp. 909-926
    • Zugno, M.1    Jónsson, T.2    Pinson, P.3
  • 83


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.