메뉴 건너뛰기




Volumn 45, Issue 1, 2012, Pages 850-858

Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting

Author keywords

Chaotic genetic algorithm simulated annealing (CGASA); Electric load forecasting; Seasonal mechanism; Support vector regression (SVR)

Indexed keywords

ALGORITHMS; ECONOMICS; FORECASTING; SIMULATED ANNEALING;

EID: 84865413861     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2012.07.006     Document Type: Article
Times cited : (65)

References (49)
  • 1
    • 0035048735 scopus 로고    scopus 로고
    • Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon
    • Saab S., Badr E., Nasr G. Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon. Energy 2001, 26:1-14.
    • (2001) Energy , vol.26 , pp. 1-14
    • Saab, S.1    Badr, E.2    Nasr, G.3
  • 2
    • 0344417105 scopus 로고    scopus 로고
    • Forecasting of energy production and consumption in Asturias (northern Spain)
    • Chavez S.G., Bernat J.X., Coalla H.L. Forecasting of energy production and consumption in Asturias (northern Spain). Energy 1999, 24:183-198.
    • (1999) Energy , vol.24 , pp. 183-198
    • Chavez, S.G.1    Bernat, J.X.2    Coalla, H.L.3
  • 3
    • 0026154960 scopus 로고
    • Composite modeling for adaptive short-term load forecasting
    • Park J.H., Park Y.M., Lee K.Y. Composite modeling for adaptive short-term load forecasting. IEEE Trans Power Syst 1991, 6:450-457.
    • (1991) IEEE Trans Power Syst , vol.6 , pp. 450-457
    • Park, J.H.1    Park, Y.M.2    Lee, K.Y.3
  • 5
    • 0032205039 scopus 로고    scopus 로고
    • The impact of temperature forecast uncertainty on Bayesian load forecasting
    • Douglas A.P., Breipohl A.M., Lee F.N., Adapa R. The impact of temperature forecast uncertainty on Bayesian load forecasting. IEEE Trans Power Syst 1998, 13:1507-1513.
    • (1998) IEEE Trans Power Syst , vol.13 , pp. 1507-1513
    • Douglas, A.P.1    Breipohl, A.M.2    Lee, F.N.3    Adapa, R.4
  • 6
    • 0035273372 scopus 로고    scopus 로고
    • Real-time very short-term load prediction for power-system automatic generation control
    • Trudnowski D.J., McReynolds W.L., Johnson J.M. Real-time very short-term load prediction for power-system automatic generation control. IEEE Trans Control Syst Technol 2001, 9:254-260.
    • (2001) IEEE Trans Control Syst Technol , vol.9 , pp. 254-260
    • Trudnowski, D.J.1    McReynolds, W.L.2    Johnson, J.M.3
  • 8
    • 12444279978 scopus 로고    scopus 로고
    • Forecasting electricity consumption in New Zealand using economic and demographic variables
    • Mohamed Z., Bodger P. Forecasting electricity consumption in New Zealand using economic and demographic variables. Energy 2005, 30:1833-1843.
    • (2005) Energy , vol.30 , pp. 1833-1843
    • Mohamed, Z.1    Bodger, P.2
  • 9
    • 0027590291 scopus 로고
    • A generalized knowledge-based short-term load- forecasting technique
    • Rahman S., Hazim O. A generalized knowledge-based short-term load- forecasting technique. IEEE Trans Power Syst 1993, 8:508-514.
    • (1993) IEEE Trans Power Syst , vol.8 , pp. 508-514
    • Rahman, S.1    Hazim, O.2
  • 10
    • 77953324921 scopus 로고    scopus 로고
    • An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
    • Azadeh A., Saberi M., Seraj O. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy 2010, 35:2351-2366.
    • (2010) Energy , vol.35 , pp. 2351-2366
    • Azadeh, A.1    Saberi, M.2    Seraj, O.3
  • 11
    • 76649131245 scopus 로고    scopus 로고
    • Greek long-term energy consumption prediction using artificial neural networks
    • Ekonomou L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35(2):512-517.
    • (2010) Energy , vol.35 , Issue.2 , pp. 512-517
    • Ekonomou, L.1
  • 12
    • 69349100782 scopus 로고    scopus 로고
    • Forecasting energy consumption in Taiwan using hybrid nonlinear models
    • Pao H.T. Forecasting energy consumption in Taiwan using hybrid nonlinear models. Energy 2009, 34:1438-1446.
    • (2009) Energy , vol.34 , pp. 1438-1446
    • Pao, H.T.1
  • 15
    • 42749086772 scopus 로고    scopus 로고
    • Combined use of unsupervised and supervised learning for daily peak load forecasting
    • Amin-Naseri M.R., Soroush A.R. Combined use of unsupervised and supervised learning for daily peak load forecasting. Energy Convers Manage 2008, 49:1302-1308.
    • (2008) Energy Convers Manage , vol.49 , pp. 1302-1308
    • Amin-Naseri, M.R.1    Soroush, A.R.2
  • 16
    • 42949150359 scopus 로고    scopus 로고
    • Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks
    • Cao J., Lin X. Study of hourly and daily solar irradiation forecast using diagonal recurrent wavelet neural networks. Energy Convers Manage 2008, 49:1396-1406.
    • (2008) Energy Convers Manage , vol.49 , pp. 1396-1406
    • Cao, J.1    Lin, X.2
  • 17
    • 84887252594 scopus 로고    scopus 로고
    • Support vector machine for function approximation, regression estimation, and signal processing
    • Vapnik V., Golowich S., Smola A. Support vector machine for function approximation, regression estimation, and signal processing. Adv Neural Inform Process Syst 1996, 9:281-287.
    • (1996) Adv Neural Inform Process Syst , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 18
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • Cao L. Support vector machines experts for time series forecasting. Neurocomputing 2003, 51:321-339.
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 19
    • 77149138054 scopus 로고    scopus 로고
    • Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting
    • Hung W.M., Hong W.C. Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting. Control Cybern 2009, 38:863-891.
    • (2009) Control Cybern , vol.38 , pp. 863-891
    • Hung, W.M.1    Hong, W.C.2
  • 20
    • 33745056237 scopus 로고    scopus 로고
    • A hybrid support vector machine regression for exchange rate prediction
    • Pai P.F., Lin C.S., Hong W.C., Chen C.T. A hybrid support vector machine regression for exchange rate prediction. Int J of Inform Manage Sci 2006, 17:19-32.
    • (2006) Int J of Inform Manage Sci , vol.17 , pp. 19-32
    • Pai, P.F.1    Lin, C.S.2    Hong, W.C.3    Chen, C.T.4
  • 21
    • 78751627947 scopus 로고    scopus 로고
    • SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
    • Hong W.C., Dong Y., Chen L.Y., Wei S.Y. SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl Soft Comput 2011, 11:1881-1890.
    • (2011) Appl Soft Comput , vol.11 , pp. 1881-1890
    • Hong, W.C.1    Dong, Y.2    Chen, L.Y.3    Wei, S.Y.4
  • 22
    • 27744588529 scopus 로고    scopus 로고
    • An improved neural network model in forecasting arrivals
    • Pai P.F., Hong W.C. An improved neural network model in forecasting arrivals. Ann Tourism Res 2005, 32:1138-1141.
    • (2005) Ann Tourism Res , vol.32 , pp. 1138-1141
    • Pai, P.F.1    Hong, W.C.2
  • 23
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • Hong W.C. Rainfall forecasting by technological machine learning models. Appl Math Comput 2008, 200:41-57.
    • (2008) Appl Math Comput , vol.200 , pp. 41-57
    • Hong, W.C.1
  • 24
    • 33947537723 scopus 로고    scopus 로고
    • A recurrent support vector regression model in rainfall forecasting
    • Pai P.F., Hong W.C. A recurrent support vector regression model in rainfall forecasting. Hydrol Process 2007, 21:819-827.
    • (2007) Hydrol Process , vol.21 , pp. 819-827
    • Pai, P.F.1    Hong, W.C.2
  • 25
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107.
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.C.1
  • 26
    • 79952362137 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR traffic flow forecasting model
    • Hong W.C., Dong Y., Zheng F., Wei S.Y. Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl Math Comput 2011, 217:6733-6747.
    • (2011) Appl Math Comput , vol.217 , pp. 6733-6747
    • Hong, W.C.1    Dong, Y.2    Zheng, F.3    Wei, S.Y.4
  • 27
    • 67650639040 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR-based electric load forecasting model
    • Hong W.C. Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int J Elect Power 2009, 31:409-417.
    • (2009) Int J Elect Power , vol.31 , pp. 409-417
    • Hong, W.C.1
  • 28
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • Hong W.C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers Manage 2009, 50:105-117.
    • (2009) Energy Convers Manage , vol.50 , pp. 105-117
    • Hong, W.C.1
  • 29
    • 80052103053 scopus 로고    scopus 로고
    • Electric load forecasting by seasonal recurrent SVR with chaotic artificial bee colony algorithm
    • Hong W.C. Electric load forecasting by seasonal recurrent SVR with chaotic artificial bee colony algorithm. Energy 2011, 36:5568-5578.
    • (2011) Energy , vol.36 , pp. 5568-5578
    • Hong, W.C.1
  • 30
    • 77958467490 scopus 로고    scopus 로고
    • Application of chaotic ant swarm optimization in electric load forecasting
    • Hong W.C. Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 2010, 38:5830-5839.
    • (2010) Energy Policy , vol.38 , pp. 5830-5839
    • Hong, W.C.1
  • 31
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electric load based on recurrent support vector machines with genetic algorithms
    • Pai P.F., Hong W.C. Forecasting regional electric load based on recurrent support vector machines with genetic algorithms. Elect Power Syst Res 2005, 74:417-425.
    • (2005) Elect Power Syst Res , vol.74 , pp. 417-425
    • Pai, P.F.1    Hong, W.C.2
  • 32
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai P.F., Hong W.C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers Manage 2005, 46:2669-2688.
    • (2005) Energy Convers Manage , vol.46 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 33
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Net 2004, 17:113-126.
    • (2004) Neural Net , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 35
  • 36
    • 0027667217 scopus 로고
    • Optimal tolerance allotment using a genetic algorithm and truncated Monte Carlo simulation
    • Lee J., Johnson G.E. Optimal tolerance allotment using a genetic algorithm and truncated Monte Carlo simulation. Comput Aided Design 1983, 25:601-611.
    • (1983) Comput Aided Design , vol.25 , pp. 601-611
    • Lee, J.1    Johnson, G.E.2
  • 38
    • 18444389480 scopus 로고    scopus 로고
    • Huang, Improved particle swarm optimization combined with chaos
    • Liu B., Wang L., Jin Y.H., Tang F.D.X. Huang, Improved particle swarm optimization combined with chaos. Chaos Soliton Fract 2005, 25:1261-1271.
    • (2005) Chaos Soliton Fract , vol.25 , pp. 1261-1271
    • Liu, B.1    Wang, L.2    Jin, Y.H.3    Tang, F.D.X.4
  • 39
    • 33845866875 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization for economic dispatch considering the generator constraints
    • Cai J., Ma X., Li L., Peng H. Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Convers Manage 2007, 48:645-653.
    • (2007) Energy Convers Manage , vol.48 , pp. 645-653
    • Cai, J.1    Ma, X.2    Li, L.3    Peng, H.4
  • 40
    • 5344224371 scopus 로고
    • Modelling, forecasting and seasonally adjusting economic time series with the X-11 ARIMA method
    • Dagum E.B. Modelling, forecasting and seasonally adjusting economic time series with the X-11 ARIMA method. J Roy Stat Soc D-Stat 1978, 27:203-216.
    • (1978) J Roy Stat Soc D-Stat , vol.27 , pp. 203-216
    • Dagum, E.B.1
  • 41
    • 0002237334 scopus 로고
    • Local trend estimation and seasonal adjustment of economic and social time series
    • Kenny P.B., Durbin J. Local trend estimation and seasonal adjustment of economic and social time series. J Roy Stat Soc A Stat 1982, 145:1-41.
    • (1982) J Roy Stat Soc A Stat , vol.145 , pp. 1-41
    • Kenny, P.B.1    Durbin, J.2
  • 42
    • 72649087088 scopus 로고    scopus 로고
    • A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand
    • Wang J., Zhu W., Zhang W., Sun D. A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand. Energy Policy 2009, 37:4901-4909.
    • (2009) Energy Policy , vol.37 , pp. 4901-4909
    • Wang, J.1    Zhu, W.2    Zhang, W.3    Sun, D.4
  • 43
    • 44449103194 scopus 로고    scopus 로고
    • Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
    • Azadeh A., Ghaderi S.F. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Convers Manage 2008, 49:2272-2278.
    • (2008) Energy Convers Manage , vol.49 , pp. 2272-2278
    • Azadeh, A.1    Ghaderi, S.F.2
  • 44
    • 33644498904 scopus 로고    scopus 로고
    • Forecasting realized volatility using a long- memory stochastic volatility model: estimation, prediction and seasonal adjustment
    • Deo R., Hurvich C. Forecasting realized volatility using a long- memory stochastic volatility model: estimation, prediction and seasonal adjustment. J Economet 2006, 131:29-58.
    • (2006) J Economet , vol.131 , pp. 29-58
    • Deo, R.1    Hurvich, C.2
  • 45
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • Amari S., Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Net 1999, 12:783-789.
    • (1999) Neural Net , vol.12 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 46
    • 0017185443 scopus 로고
    • Simple mathematical models with very complicated dynamics
    • May R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261:459-467.
    • (1976) Nature , vol.261 , pp. 459-467
    • May, R.M.1
  • 47
    • 44649106898 scopus 로고    scopus 로고
    • Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos
    • Cheng C.T., Wang W.C., Xu D.M., Chau K.W. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour Manage 2008, 22:895-909.
    • (2008) Water Resour Manage , vol.22 , pp. 895-909
    • Cheng, C.T.1    Wang, W.C.2    Xu, D.M.3    Chau, K.W.4
  • 48
    • 33645856653 scopus 로고
    • Global optimization and simulated annealing
    • Dekkers A., Aarts E.H.L. Global optimization and simulated annealing. Math Prog 1991, 50:367-393.
    • (1991) Math Prog , vol.50 , pp. 367-393
    • Dekkers, A.1    Aarts, E.H.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.