메뉴 건너뛰기




Volumn 4, Issue 5, 2014, Pages 347-360

Frequent and discriminative subnetwork mining for mild cognitive impairment classification

Author keywords

functional connectivity network; graph kernel; mild cognitive impairment; subgraph mining

Indexed keywords

AGED; ALGORITHM; ALZHEIMER DISEASE; ARTICLE; BRAIN REGION; CLINICAL ARTICLE; CONTROLLED STUDY; DATA MINING; DISCRIMINATIVE SUBNETWORK MINING; DISEASE CLASSIFICATION; FEMALE; FREQUENT SUBNETWORK MINING; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; MALE; MILD COGNITIVE IMPAIRMENT; PRIORITY JOURNAL; BRAIN; BRAIN MAPPING; CASE CONTROL STUDY; NERVE CELL NETWORK; NERVE TRACT; NUCLEAR MAGNETIC RESONANCE IMAGING; PATHOPHYSIOLOGY; PROCEDURES; REPRODUCIBILITY; VERY ELDERLY;

EID: 84926634071     PISSN: 21580014     EISSN: 21580022     Source Type: Journal    
DOI: 10.1089/brain.2013.0214     Document Type: Article
Times cited : (27)

References (80)
  • 2
    • 84891725921 scopus 로고    scopus 로고
    • A shortest-path graph kernel for estimating gene product semantic similarity
    • Alvarez MA, Qi X, Yan C. 2011. A shortest-path graph kernel for estimating gene product semantic similarity. J Biomed Semantics 2:3.
    • (2011) J Biomed Semantics , vol.2 , pp. 3
    • Alvarez, M.A.1    Qi, X.2    Yan, C.3
  • 3
    • 84863337977 scopus 로고    scopus 로고
    • Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment
    • Bai F, Shu N, Yuan YG, Shi YM, Yu H, Wu D, Wang JH, Xia MR, He Y, Zhang ZJ. 2012. Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J Neurosci 32:4307-4318.
    • (2012) J Neurosci , vol.32 , pp. 4307-4318
    • Bai, F.1    Shu, N.2    Yuan, Y.G.3    Shi, Y.M.4    Yu, H.5    Wu, D.6    Wang, J.H.7    Xia, M.R.8    He, Y.9    Zhang, Z.J.10
  • 4
    • 0032058918 scopus 로고    scopus 로고
    • Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s
    • PII S0197458098000529
    • Berchtold NC, Cotman, CW. 1998. Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960. Neurobiol Aging 19:173-189. (Pubitemid 128714320)
    • (1998) Neurobiology of Aging , vol.19 , Issue.3 , pp. 173-189
    • Berchtold, N.C.1    Cotman, C.W.2
  • 7
    • 34249697099 scopus 로고    scopus 로고
    • Forecasting the global burden of Alzheimer's disease
    • DOI 10.1016/j.jalz.2007.04.381, PII S155252600700475X
    • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. 2007. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 3:186-191. (Pubitemid 46825511)
    • (2007) Alzheimer's and Dementia , vol.3 , Issue.3 , pp. 186-191
    • Brookmeyer, R.1    Johnson, E.2    Ziegler-Graham, K.3    Arrighi, H.M.4
  • 9
    • 79953010204 scopus 로고    scopus 로고
    • Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging
    • Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, Franczak M, Antuono P, Li SJ. 2011. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology 259:213-221.
    • (2011) Radiology , vol.259 , pp. 213-221
    • Chen, G.1    Ward, B.D.2    Xie, C.3    Li, W.4    Wu, Z.5    Jones, J.L.6    Franczak, M.7    Antuono, P.8    Li, S.J.9
  • 10
    • 58149184695 scopus 로고    scopus 로고
    • Revealing modular architecture of human brain structural networks by using cortical thickness from MRI
    • Chen ZJ, He Y, Rosa P, Germann J, Evans AC. 2008. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18:2374-2381.
    • (2008) Cereb Cortex , vol.18 , pp. 2374-2381
    • Chen, Z.J.1    He, Y.2    Rosa, P.3    Germann, J.4    Evans, A.C.5
  • 12
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
    • Alzheimer's Disease Neuroimaging Initiative
    • Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert MO, Chupin M, Benali H, Colliot O; Alzheimer's Disease Neuroimaging Initiative. 2011. Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage 56:766-781.
    • (2011) Neuroimage , vol.56 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehericy, S.5    Habert, M.O.6    Chupin, M.7    Benali, H.8    Colliot, O.9
  • 13
  • 14
  • 15
    • 79957858302 scopus 로고    scopus 로고
    • Structural and functional network connectivity breakdown in Alzheimer's disease studied with magnetic resonance imaging techniques
    • Filippi M, Agosta F. 2011. Structural and functional network connectivity breakdown in Alzheimer's disease studied with magnetic resonance imaging techniques. J Alzheimers Dis 24:455-474.
    • (2011) J Alzheimers Dis , vol.24 , pp. 455-474
    • Filippi, M.1    Agosta, F.2
  • 16
    • 78149420706 scopus 로고    scopus 로고
    • Network scaling effects in graph analytic studies of human resting-state FMRI data
    • Fornito A, Zalesky A, Bullmore ET. 2010. Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci 4:22.
    • (2010) Front Syst Neurosci , vol.4 , pp. 22
    • Fornito, A.1    Zalesky, A.2    Bullmore, E.T.3
  • 17
    • 80053117344 scopus 로고    scopus 로고
    • Temporal and spatial evolution of brain network topology during the first two years of life
    • Gao W, Gilmore JH, Giovanello KS, Smith JK, Shen D, Zhu H, Lin W. 2011. Temporal and spatial evolution of brain network topology during the first two years of life. PLoS One 6:e25278.
    • (2011) PLoS One , vol.6
    • Gao, W.1    Gilmore, J.H.2    Giovanello, K.S.3    Smith, J.K.4    Shen, D.5    Zhu, H.6    Lin, W.7
  • 18
    • 9444266406 scopus 로고    scopus 로고
    • On graph kernels: Hardness results and efficient alternatives
    • Learning Theory and Kernel Machines
    • Gartner T, Flach P, Wrobel S. 2003. On graph kernels: Hardness results and efficient alternatives. Learn Theory Kernel Machines 2777:129-143. (Pubitemid 37053200)
    • (2003) Lecture Notes In Computer Science , vol.2777 , pp. 129-143
    • Gartner, T.1    Flach, P.2    Wrobel, S.3
  • 20
    • 33749010323 scopus 로고    scopus 로고
    • Brain mechanisms of successful compensation during learning in Alzheimer disease
    • DOI 10.1212/01.wnl.0000237534.31734.1b, PII 0000611420060926000022
    • Gould RL, Arroyo B, Brown RG, Owen AM, Bullmore ET, Howard RJ. 2006. Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology 67: 1011-1017. (Pubitemid 44454595)
    • (2006) Neurology , vol.67 , Issue.6 , pp. 1011-1017
    • Gould, R.L.1    Arroyo, B.2    Brown, R.G.3    Owen, A.M.4    Bullmore, E.T.5    Howard, R.J.6
  • 21
    • 0037319161 scopus 로고    scopus 로고
    • Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease
    • Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. 2003. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J Neurosci 23:986-993. (Pubitemid 36206190)
    • (2003) Journal of Neuroscience , vol.23 , Issue.3 , pp. 986-993
    • Grady, C.L.1    McIntosh, A.R.2    Beig, S.3    Keightley, M.L.4    Burian, H.5    Black, S.E.6
  • 22
    • 78951472554 scopus 로고    scopus 로고
    • Frequency-dependent changes in the amplitude of lowfrequency fluctuations in amnestic mild cognitive impairment: A resting-state fMRI study
    • Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J. 2011. Frequency-dependent changes in the amplitude of lowfrequency fluctuations in amnestic mild cognitive impairment: A resting-state fMRI study. Neuroimage 55:287-295.
    • (2011) Neuroimage , vol.55 , pp. 287-295
    • Han, Y.1    Wang, J.2    Zhao, Z.3    Min, B.4    Lu, J.5    Li, K.6    He, Y.7    Jia, J.8
  • 23
    • 34948865790 scopus 로고    scopus 로고
    • 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA
    • Harchaoui Z, Bach F. 2007. Image Classification with Segmentation Graph Kernels. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, pp. 612-619.
    • (2007) Image Classification with Segmentation Graph Kernels , pp. 612-619
    • Harchaoui, Z.1    Bach, F.2
  • 24
    • 77952317463 scopus 로고    scopus 로고
    • Comparison of characteristics between region-And voxel-based network analyses in restingstate fMRI data
    • Hayasaka S, Laurienti PJ. 2010. Comparison of characteristics between region-And voxel-based network analyses in restingstate fMRI data. Neuroimage 50:499-508.
    • (2010) Neuroimage , vol.50 , pp. 499-508
    • Hayasaka, S.1    Laurienti, P.J.2
  • 25
    • 34548837501 scopus 로고    scopus 로고
    • Small-world anatomical networks in the human brain revealed by cortical thickness from MRI
    • DOI 10.1093/cercor/bhl149
    • He Y, Chen ZJ, Evans AC. 2007. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407-2419. (Pubitemid 47517476)
    • (2007) Cerebral Cortex , vol.17 , Issue.10 , pp. 2407-2419
    • He, Y.1    Chen, Z.J.2    Evans, A.C.3
  • 26
    • 77954623552 scopus 로고    scopus 로고
    • Graph theoretical modeling of brain connectivity
    • He Y, Evans A. 2010. Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23:341-350.
    • (2010) Curr Opin Neurol , vol.23 , pp. 341-350
    • He, Y.1    Evans, A.2
  • 28
    • 0033786531 scopus 로고    scopus 로고
    • Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: A crosssectional and longitudinal study
    • Huang C, Wahlund L, Dierks T, Julin P, Winblad B, Jelic V. 2000. Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: A crosssectional and longitudinal study. Clin Neurophysiol 111: 1961-1967.
    • (2000) Clin Neurophysiol , vol.111 , pp. 1961-1967
    • Huang, C.1    Wahlund, L.2    Dierks, T.3    Julin, P.4    Winblad, B.5    Jelic, V.6
  • 29
    • 84974733299 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • Inokuchi A, Washio T, Motoda H. 2000. An apriori-based algorithm for mining frequent substructures from graph data. Lect Notes Comput 1910:13-23.
    • (2000) Lect Notes Comput , vol.1910 , pp. 13-23
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 31
    • 84874159239 scopus 로고    scopus 로고
    • A survey of frequent subgraph mining algorithms
    • Jiang CT, Coenen F, Zito M. 2013. A survey of frequent subgraph mining algorithms. Knowl Eng Rev 28:75-105.
    • (2013) Knowl Eng Rev , vol.28 , pp. 75-105
    • Jiang, C.T.1    Coenen, F.2    Zito, M.3
  • 32
    • 84893330870 scopus 로고    scopus 로고
    • Integration of network topological and connectivity properties for neuroimaging classification
    • Jie B, Zhang D, Gao W, Wang Q, Wee C, Shen D. 2014. Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng 61: 576-589.
    • (2014) IEEE Trans Biomed Eng , vol.61 , pp. 576-589
    • Jie, B.1    Zhang, D.2    Gao, W.3    Wang, Q.4    Wee, C.5    Shen, D.6
  • 33
    • 84886741411 scopus 로고    scopus 로고
    • Integrating multiple network properties for MCI identification
    • Guorong Wu, Daoqiang Zhang, Dinggang Shen, Pingkun Yan, Kenji Suzuki, Fei Wang (eds.). Nagoya, Japan Springer
    • Jie B, Zhang D, Suk HI, Wee CY, Shen D. 2013. Integrating multiple network properties for MCI identification. In: Guorong Wu, Daoqiang Zhang, Dinggang Shen, Pingkun Yan, Kenji Suzuki, Fei Wang (eds.), Machine Learning in Medical Imaging. Nagoya, Japan: Springer; pp. 9-16.
    • (2013) Machine Learning in Medical Imaging , pp. 9-16
    • Jie, B.1    Zhang, D.2    Suk, H.I.3    Wee, C.Y.4    Shen, D.5
  • 34
    • 84902169859 scopus 로고    scopus 로고
    • Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification
    • Epub ahead of print]; DOI: 10.1002/hbm.22353
    • Jie B, Zhang D, Wee CY, Shen D. 2013. Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Hum Brain Mapp [Epub ahead of print]; DOI: 10.1002/hbm.22353.
    • (2013) Hum Brain Mapp
    • Jie, B.1    Zhang, D.2    Wee, C.Y.3    Shen, D.4
  • 35
    • 79959700035 scopus 로고    scopus 로고
    • A tutorial in connectome analysis: Topological and spatial features of brain networks
    • Kaiser M. 2011. A tutorial in connectome analysis: Topological and spatial features of brain networks. Neuroimage 57:892-907.
    • (2011) Neuroimage , vol.57 , pp. 892-907
    • Kaiser, M.1
  • 36
    • 79851478861 scopus 로고    scopus 로고
    • A comparative survey of algorithms for frequent subgraph discovery
    • Krishna V, Suri NNRR, Athithan G. 2011. A comparative survey of algorithms for frequent subgraph discovery. Curr Sci India 100:190-198.
    • (2011) Curr Sci India , vol.100 , pp. 190-198
    • Krishna, V.1    Suri, N.N.R.R.2    Athithan, G.3
  • 37
    • 4544385908 scopus 로고    scopus 로고
    • An efficient algorithm for discovering frequent subgraphs
    • Kuramochi M, Karypis G. 2004. An efficient algorithm for discovering frequent subgraphs. IEEE Trans Knowl Data Eng 16:1038-1051.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , pp. 1038-1051
    • Kuramochi, M.1    Karypis, G.2
  • 38
    • 43849093181 scopus 로고    scopus 로고
    • Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: A review of resting-state fMRI studies
    • Liu Y, Wang K, Yu CS, He Y, ZhouY, Liang M, Wang L, Jiang TZ. 2008. Regional homogeneity, functional connectivity and imaging markers of Alzheimer's disease: A review of resting-state fMRI studies. Neuropsychologia 46:1648-1656.
    • (2008) Neuropsychologia , vol.46 , pp. 1648-1656
    • Liu, Y.1    Wang, K.2    Yu, C.S.3    He, Y.4    Zhou, Y.5    Liang, M.6    Wang, L.7    Jiang, T.Z.8
  • 41
    • 64949166661 scopus 로고    scopus 로고
    • Alzheimer disease: Quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment1
    • McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ, Holland D, Karow DS, Pung CJ, Brewer JB, Dale AM. 2009. Alzheimer disease: Quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment1. Radiology 251:195-205.
    • (2009) Radiology , vol.251 , pp. 195-205
    • McEvoy, L.K.1    Fennema-Notestine, C.2    Roddey, J.C.3    Hagler, D.J.4    Holland, D.5    Karow, D.S.6    Pung, C.J.7    Brewer, J.B.8    Dale, A.M.9
  • 43
    • 20444423242 scopus 로고    scopus 로고
    • Reduced hippocampal metabolism in MCI and AD: Automated FDG-PET image analysis
    • DOI 10.1212/01.WNL.0000163856.13524.08
    • Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, Li Y, Boppana M, de Leon MJ. 2005. Reduced hippocampal metabolism in MCI and AD-Automated FDG-PET image analysis. Neurology 64:1860-1867. (Pubitemid 40800698)
    • (2005) Neurology , vol.64 , Issue.11 , pp. 1860-1867
    • Mosconi, L.1    Tsui, W.-H.2    De Santi, S.3    Li, J.4    Rusinek, H.5    Convit, A.6    Li, Y.7    Boppana, M.8    De Leon, M.J.9
  • 45
  • 47
    • 77249100186 scopus 로고    scopus 로고
    • Identifying population differences in whole-brain structural networks: A machine learning approach
    • Robinson EC, Hammers A, Ericsson A, Edwards AD, Rueckert D. 2010. Identifying population differences in whole-brain structural networks: A machine learning approach. Neuroimage 50:910-919.
    • (2010) Neuroimage , vol.50 , pp. 910-919
    • Robinson, E.C.1    Hammers, A.2    Ericsson, A.3    Edwards, A.D.4    Rueckert, D.5
  • 49
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52: 1059-1069.
    • (2010) Neuroimage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 53
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: Hierarchical attribute matching mechanism for elastic registration
    • Shen D, Davatzikos C. 2002. HAMMER: Hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging 21:1421-1439.
    • (2002) IEEE Trans Med Imaging , vol.21 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 56
    • 84862976101 scopus 로고    scopus 로고
    • From simple graphs to the connectome: Networks in neuroimaging
    • Sporns O. 2012. From simple graphs to the connectome: Networks in neuroimaging. Neuroimage 62:881-886.
    • (2012) Neuroimage , vol.62 , pp. 881-886
    • Sporns, O.1
  • 57
    • 33845742477 scopus 로고    scopus 로고
    • Small-world networks and functional connectivity in Alzheimer's disease
    • DOI 10.1093/cercor/bhj127
    • Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. 2007. Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex 17:92-99. (Pubitemid 44973898)
    • (2007) Cerebral Cortex , vol.17 , Issue.1 , pp. 92-99
    • Stam, C.J.1    Jones, B.F.2    Nolte, G.3    Breakspear, M.4    Scheltens, P.H.5
  • 59
    • 33747591635 scopus 로고    scopus 로고
    • Cognitive reserve and Alzheimer disease
    • DOI 10.1097/00002093-200607001-00010, PII 0000209320060700100010
    • Stern Y. 2006. Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20:S69-S74. (Pubitemid 44265854)
    • (2006) Alzheimer Disease and Associated Disorders , vol.20 , Issue.SUPPL. 2
    • Stern, Y.1
  • 60
    • 46249131887 scopus 로고    scopus 로고
    • Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
    • Supekar K, Menon V, Rubin D, Musen M, Greicius MD. 2008. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput Biol 4:e1000100.
    • (2008) PLoS Comput Biol , vol.4
    • Supekar, K.1    Menon, V.2    Rubin, D.3    Musen, M.4    Greicius, M.D.5
  • 62
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • DOI 10.1006/nimg.2001.0978
    • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI singlesubject brain. Neuroimage 15:273-289. (Pubitemid 34852226)
    • (2002) NeuroImage , vol.15 , Issue.1 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6    Mazoyer, B.7    Joliot, M.8
  • 63
    • 77953961776 scopus 로고    scopus 로고
    • Exploring the brain network: A review on resting-state fMRI functional connectivity
    • van den Heuvel MP, Pol HEH. 2010. Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519-534.
    • (2010) Eur Neuropsychopharmacol , vol.20 , pp. 519-534
    • Van Den Heuvel, M.P.1    Pol, H.E.H.2
  • 64
    • 78149435102 scopus 로고    scopus 로고
    • Comparing brain networks of different size and connectivity density using graph theory
    • van Wijk BC, Stam CJ, Daffertshofer A. 2010. Comparing brain networks of different size and connectivity density using graph theory. PLoS One 5:e13701.
    • (2010) PLoS One , vol.5
    • Van Wijk, B.C.1    Stam, C.J.2    Daffertshofer, A.3
  • 69
    • 35148890661 scopus 로고    scopus 로고
    • Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study
    • DOI 10.1002/hbm.20324
    • Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. 2007. Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study. Hum Brain Mapp 28:967-978. (Pubitemid 47549702)
    • (2007) Human Brain Mapping , vol.28 , Issue.10 , pp. 967-978
    • Wang, K.1    Liang, M.2    Wang, L.3    Tian, L.4    Zhang, X.5    Li, K.6    Jiang, T.7
  • 73
    • 84864144762 scopus 로고    scopus 로고
    • Mapping the Alzheimer's brain with connectomics
    • Xie T, He Y. 2011. Mapping the Alzheimer's brain with connectomics. Front Psychiatry 2:77.
    • (2011) Front Psychiatry , vol.2 , pp. 77
    • Xie, T.1    He, Y.2
  • 76
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • Alzheimer's Disease Neuroimaging I.
    • Zhang D, Wang Y, Zhou L, Yuan H, Shen D, Alzheimer's Disease Neuroimaging I. 2011. Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 55:856-867.
    • (2011) Neuroimage , vol.55 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 77
    • 84887361661 scopus 로고    scopus 로고
    • Discriminative brain effective connectivity analysis for alzheimer's disease: A kernel learning approach upon sprse gaussian bayesian network 2013
    • Portland, Oregon, USA
    • Zhou L, Wang L, Liu L, Ogunbona P, Shen D. 2013. Discriminative Brain Effective Connectivity Analysis for Alzheimer's Disease: A Kernel Learning Approach Upon Sprse Gaussian Bayesian network. 2013 IEEE Conference on Computer Vision and Pattern Recoginition. Portland, Oregon, USA.
    • (2013) IEEE Conference on Computer Vision and Pattern Recoginition
    • Zhou, L.1    Wang, L.2    Liu, L.3    Ogunbona, P.4    Shen, D.5
  • 78
    • 79960471063 scopus 로고    scopus 로고
    • Hierarchical anatomical brain networks for MCI prediction: Revisiting volumetric measures
    • Zhou L, Wang Y, Li Y, Yap PT, Shen D. 2011. Hierarchical anatomical brain networks for MCI prediction: Revisiting volumetric measures. PLoS One 6:e21935.
    • (2011) PLoS One , vol.6
    • Zhou, L.1    Wang, Y.2    Li, Y.3    Yap, P.T.4    Shen, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.