메뉴 건너뛰기




Volumn 2015, Issue , 2015, Pages

Unbiased feature selection in learning random forests for high-dimensional data

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; LEARNING; RANDOM FOREST;

EID: 84926622239     PISSN: 23566140     EISSN: 1537744X     Source Type: Journal    
DOI: 10.1155/2015/471371     Document Type: Article
Times cited : (66)

References (32)
  • 1
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests, " Machine Learning, vol. 450, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.450 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 1542573450 scopus 로고    scopus 로고
    • Classification trees with unbiased multiway splits
    • H. Kim and W.-Y. Loh, "Classification trees with unbiased multiway splits, " Journal of the American Statistical Association, vol. 96, no. 454, pp. 589-604, 2001.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 589-604
    • Kim, H.1    Loh, W.-Y.2
  • 4
    • 0028443213 scopus 로고
    • Technical note: Bias in informationbased measures in decision tree induction
    • A. P. White and W. Z. Liu, "Technical note: bias in informationbased measures in decision tree induction, " Machine Learning, vol. 15, no. 3, pp. 321-329, 1994.
    • (1994) Machine Learning , vol.15 , Issue.3 , pp. 321-329
    • White, A.P.1    Liu, W.Z.2
  • 5
    • 0034250160 scopus 로고    scopus 로고
    • Experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich, "Experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, " Machine Learning, vol. 40, no. 2, pp. 139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 6
    • 84983110889 scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boosting
    • Springer
    • Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting, " in Computational LearningTheory, pp. 23-37, Springer, 1995.
    • (1995) Computational LearningTheory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 0032139235 scopus 로고    scopus 로고
    • Therandom subspace method for constructing decision forests
    • T. K. Ho, "The random subspace method for constructing decision forests, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832-844, 1998.
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors, "Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • article 3
    • R. Díaz-Uriarte and S. Alvarez de Andrés, "Gene selection and classification of microarray data using random forest, " BMC Bioinformatics, vol. 7, article 3, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Díaz-Uriarte, R.1    Alvarez De Andrés, S.2
  • 14
    • 84870244637 scopus 로고    scopus 로고
    • Stratified sampling for feature subspace selection in random forests for high dimensional data
    • Y. Ye, Q. Wu, J. ZhexueHuang, M. K. Ng, and X. Li, "Stratified sampling for feature subspace selection in random forests for high dimensional data, " Pattern Recognition, vol. 46, no. 3, pp. 769-787, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 769-787
    • Ye, Y.1    Wu, Q.2    Zhexuehuang, J.3    Ng, M.K.4    Li, X.5
  • 15
    • 80052747011 scopus 로고    scopus 로고
    • A feature group weighting method for subspace clustering of high-dimensional data
    • X. Chen, Y. Ye, X. Xu, and J. Z. Huang, "A feature group weighting method for subspace clustering of high-dimensional data, " Pattern Recognition, vol. 45, no. 1, pp. 434-446, 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.1 , pp. 434-446
    • Chen, X.1    Ye, Y.2    Xu, X.3    Huang, J.Z.4
  • 16
    • 51749102692 scopus 로고    scopus 로고
    • Enriched random forests
    • D. Amaratunga, J. Cabrera, and Y.-S. Lee, "Enriched random forests, " Bioinformatics, vol. 240, no. 18, pp. 2010-2014, 2008.
    • (2008) Bioinformatics , vol.240 , Issue.18 , pp. 2010-2014
    • Amaratunga, D.1    Cabrera, J.2    Lee, Y.-S.3
  • 17
    • 84881038733 scopus 로고    scopus 로고
    • Gene selection with guided regularized random forest
    • H. Deng and G. Runger, "Gene selection with guided regularized random forest, " Pattern Recognition, vol. 46, no. 12, pp. 3483-3489, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.12 , pp. 3483-3489
    • Deng, H.1    Runger, G.2
  • 18
    • 53549101527 scopus 로고    scopus 로고
    • Statistical sources of variable selection bias in classification trees based on the gini index
    • C. Strobl, "Statistical sources of variable selection bias in classification trees based on the gini index, " Tech. Rep. SFB 386, 2005, http://epub.ub.uni-muenchen.de/archive/00001789/01/paper420.pdf.
    • (2005) Tech. Rep. SFB , vol.386
    • Strobl, C.1
  • 19
    • 34548250123 scopus 로고    scopus 로고
    • Unbiased split selection for classification trees based on the gini index
    • C. Strobl, A.-L. Boulesteix, and T. Augustin, "Unbiased split selection for classification trees based on the gini index, " Computational Statistics and Data Analysis, vol. 520, no. 1, pp. 483-501, 2007.
    • (2007) Computational Statistics and Data Analysis , vol.520 , Issue.1 , pp. 483-501
    • Strobl, C.1    Boulesteix, A.-L.2    Augustin, T.3
  • 20
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • article 25
    • C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, "Bias in random forest variable importance measures: illustrations, sources and a solution, " BMC Bioinformatics, vol. 8, article 25, 2007.
    • (2007) BMC Bioinformatics , vol.8
    • Strobl, C.1    Boulesteix, A.-L.2    Zeileis, A.3    Hothorn, T.4
  • 22
    • 84926659381 scopus 로고    scopus 로고
    • Party: A laboratory for recursive partytioning
    • T. Hothorn, K. Hornik, and A. Zeileis, Party: a laboratory for recursive partytioning, r package version 0. 9-9999, 2011, http://cran.r-project.org/package=party.
    • R Package Version , vol.0 , Issue.9-9999 , pp. 2011
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 23
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon, "Individual comparisons by ranking methods, " Biometrics, vol. 10, no. 6, pp. 80-83, 1945.
    • (1945) Biometrics , vol.10 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 24
    • 85018090433 scopus 로고    scopus 로고
    • Two-level quantile regression forests for bias correction in range prediction
    • T.-T. Nguyen, J. Z. Huang, and T. T. Nguyen, "Two-level quantile regression forests for bias correction in range prediction, " Machine Learning, 2014.
    • (2014) Machine Learning
    • Nguyen, T.-T.1    Huang, J.Z.2    Nguyen, T.T.3
  • 25
    • 84901260865 scopus 로고    scopus 로고
    • Extensions to quantile regression forests for very high-dimensional data
    • of Lecture Notes in Computer Science, Springer, Berlin, Germany
    • T.-T. Nguyen, J. Z. Huang, K. Imran, M. J. Li, and G. Williams, "Extensions to quantile regression forests for very high-dimensional data, " in Advances in Knowledge Discovery and Data Mining, vol. 8444 of Lecture Notes in Computer Science, pp. 247-258, Springer, Berlin, Germany, 2014.
    • (2014) Advances in Knowledge Discovery and Data Mining , vol.8444 , pp. 247-258
    • Nguyen, T.-T.1    Huang, J.Z.2    Imran, K.3    Li, M.J.4    Williams, G.5
  • 30
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • A. Liaw and M. Wiener, "Classification and regression by randomforest, " R News, vol. 20, no. 3, pp. 18-22, 2002.
    • (2002) R News , vol.20 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 31
    • 84926641729 scopus 로고    scopus 로고
    • Varselrf: Variable selection using forests
    • R. Diaz-Uriarte, "varselrf: variable selection using random forests, " R package version 0. 7-1, 2009, http://ligarto.org/rdiaz/Software/Software.html.
    • (2009) R Package Version , vol.0 , pp. 7-1
    • Diaz-Uriarte, R.1
  • 32
    • 77953166503 scopus 로고    scopus 로고
    • Glmnet: Lasso and elastic-net regularized generalized linear models
    • pages 1-1
    • J. H. Friedman, T. J. Hastie, and R. J. Tibshirani, "glmnet: Lasso and elastic-net regularized generalized linear models, " R package version, pages 1-1, 2010, http://CRAN.R-project.org/package=glmnet.
    • (2010) R Package Version
    • Friedman, J.H.1    Hastie, T.J.2    Tibshirani, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.