-
1
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Machine Learning, vol. 450, no. 1, pp. 5-32, 2001.
-
(2001)
Machine Learning
, vol.450
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
2
-
-
85052770793
-
-
CRC Press, Boca Raton, Fla, USA
-
L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees, CRC Press, Boca Raton, Fla, USA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.A.4
-
3
-
-
1542573450
-
Classification trees with unbiased multiway splits
-
H. Kim and W.-Y. Loh, "Classification trees with unbiased multiway splits, " Journal of the American Statistical Association, vol. 96, no. 454, pp. 589-604, 2001.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.454
, pp. 589-604
-
-
Kim, H.1
Loh, W.-Y.2
-
4
-
-
0028443213
-
Technical note: Bias in informationbased measures in decision tree induction
-
A. P. White and W. Z. Liu, "Technical note: bias in informationbased measures in decision tree induction, " Machine Learning, vol. 15, no. 3, pp. 321-329, 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.3
, pp. 321-329
-
-
White, A.P.1
Liu, W.Z.2
-
5
-
-
0034250160
-
Experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich, "Experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, " Machine Learning, vol. 40, no. 2, pp. 139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
6
-
-
84983110889
-
A desicion-theoretic generalization of on-line learning and an application to boosting
-
Springer
-
Y. Freund and R. E. Schapire, "A desicion-theoretic generalization of on-line learning and an application to boosting, " in Computational LearningTheory, pp. 23-37, Springer, 1995.
-
(1995)
Computational LearningTheory
, pp. 23-37
-
-
Freund, Y.1
Schapire, R.E.2
-
9
-
-
0032139235
-
Therandom subspace method for constructing decision forests
-
T. K. Ho, "The random subspace method for constructing decision forests, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832-844, 1998.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
10
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors, "Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
11
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
article 3
-
R. Díaz-Uriarte and S. Alvarez de Andrés, "Gene selection and classification of microarray data using random forest, " BMC Bioinformatics, vol. 7, article 3, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Díaz-Uriarte, R.1
Alvarez De Andrés, S.2
-
12
-
-
77957922514
-
Variable selection using randomforests
-
R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, "Variable selection using randomforests, " Pattern Recognition Letters, vol. 31, no. 14, pp. 2225-2236, 2010.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.14
, pp. 2225-2236
-
-
Genuer, R.1
Poggi, J.-M.2
Tuleau-Malot, C.3
-
13
-
-
84866622935
-
Classifying very high-dimensional data with random forests built from small subspaces
-
B. Xu, J. Z. Huang, G. Williams, Q. Wang, and Y. Ye, "Classifying very high-dimensional data with random forests built from small subspaces, " International Journal of DataWarehousing and Mining, vol. 8, no. 2, pp. 44-63, 2012.
-
(2012)
International Journal of DataWarehousing and Mining
, vol.8
, Issue.2
, pp. 44-63
-
-
Xu, B.1
Huang, J.Z.2
Williams, G.3
Wang, Q.4
Ye, Y.5
-
14
-
-
84870244637
-
Stratified sampling for feature subspace selection in random forests for high dimensional data
-
Y. Ye, Q. Wu, J. ZhexueHuang, M. K. Ng, and X. Li, "Stratified sampling for feature subspace selection in random forests for high dimensional data, " Pattern Recognition, vol. 46, no. 3, pp. 769-787, 2013.
-
(2013)
Pattern Recognition
, vol.46
, Issue.3
, pp. 769-787
-
-
Ye, Y.1
Wu, Q.2
Zhexuehuang, J.3
Ng, M.K.4
Li, X.5
-
15
-
-
80052747011
-
A feature group weighting method for subspace clustering of high-dimensional data
-
X. Chen, Y. Ye, X. Xu, and J. Z. Huang, "A feature group weighting method for subspace clustering of high-dimensional data, " Pattern Recognition, vol. 45, no. 1, pp. 434-446, 2012.
-
(2012)
Pattern Recognition
, vol.45
, Issue.1
, pp. 434-446
-
-
Chen, X.1
Ye, Y.2
Xu, X.3
Huang, J.Z.4
-
16
-
-
51749102692
-
Enriched random forests
-
D. Amaratunga, J. Cabrera, and Y.-S. Lee, "Enriched random forests, " Bioinformatics, vol. 240, no. 18, pp. 2010-2014, 2008.
-
(2008)
Bioinformatics
, vol.240
, Issue.18
, pp. 2010-2014
-
-
Amaratunga, D.1
Cabrera, J.2
Lee, Y.-S.3
-
17
-
-
84881038733
-
Gene selection with guided regularized random forest
-
H. Deng and G. Runger, "Gene selection with guided regularized random forest, " Pattern Recognition, vol. 46, no. 12, pp. 3483-3489, 2013.
-
(2013)
Pattern Recognition
, vol.46
, Issue.12
, pp. 3483-3489
-
-
Deng, H.1
Runger, G.2
-
18
-
-
53549101527
-
Statistical sources of variable selection bias in classification trees based on the gini index
-
C. Strobl, "Statistical sources of variable selection bias in classification trees based on the gini index, " Tech. Rep. SFB 386, 2005, http://epub.ub.uni-muenchen.de/archive/00001789/01/paper420.pdf.
-
(2005)
Tech. Rep. SFB
, vol.386
-
-
Strobl, C.1
-
19
-
-
34548250123
-
Unbiased split selection for classification trees based on the gini index
-
C. Strobl, A.-L. Boulesteix, and T. Augustin, "Unbiased split selection for classification trees based on the gini index, " Computational Statistics and Data Analysis, vol. 520, no. 1, pp. 483-501, 2007.
-
(2007)
Computational Statistics and Data Analysis
, vol.520
, Issue.1
, pp. 483-501
-
-
Strobl, C.1
Boulesteix, A.-L.2
Augustin, T.3
-
20
-
-
33847096395
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
-
article 25
-
C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, "Bias in random forest variable importance measures: illustrations, sources and a solution, " BMC Bioinformatics, vol. 8, article 25, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
-
-
Strobl, C.1
Boulesteix, A.-L.2
Zeileis, A.3
Hothorn, T.4
-
21
-
-
48549095457
-
Conditional variable importance for forests
-
article 307
-
C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, "Conditional variable importance for random forests, " BMC Bioinformatics, vol. 9, no. 1, article 307, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
-
-
Strobl, C.1
Boulesteix, A.-L.2
Kneib, T.3
Augustin, T.4
Zeileis, A.5
-
22
-
-
84926659381
-
Party: A laboratory for recursive partytioning
-
T. Hothorn, K. Hornik, and A. Zeileis, Party: a laboratory for recursive partytioning, r package version 0. 9-9999, 2011, http://cran.r-project.org/package=party.
-
R Package Version
, vol.0
, Issue.9-9999
, pp. 2011
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
23
-
-
0001884644
-
Individual comparisons by ranking methods
-
F. Wilcoxon, "Individual comparisons by ranking methods, " Biometrics, vol. 10, no. 6, pp. 80-83, 1945.
-
(1945)
Biometrics
, vol.10
, Issue.6
, pp. 80-83
-
-
Wilcoxon, F.1
-
24
-
-
85018090433
-
Two-level quantile regression forests for bias correction in range prediction
-
T.-T. Nguyen, J. Z. Huang, and T. T. Nguyen, "Two-level quantile regression forests for bias correction in range prediction, " Machine Learning, 2014.
-
(2014)
Machine Learning
-
-
Nguyen, T.-T.1
Huang, J.Z.2
Nguyen, T.T.3
-
25
-
-
84901260865
-
Extensions to quantile regression forests for very high-dimensional data
-
of Lecture Notes in Computer Science, Springer, Berlin, Germany
-
T.-T. Nguyen, J. Z. Huang, K. Imran, M. J. Li, and G. Williams, "Extensions to quantile regression forests for very high-dimensional data, " in Advances in Knowledge Discovery and Data Mining, vol. 8444 of Lecture Notes in Computer Science, pp. 247-258, Springer, Berlin, Germany, 2014.
-
(2014)
Advances in Knowledge Discovery and Data Mining
, vol.8444
, pp. 247-258
-
-
Nguyen, T.-T.1
Huang, J.Z.2
Imran, K.3
Li, M.J.4
Williams, G.5
-
26
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, "From few to many: illumination cone models for face recognition under variable lighting and pose, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643-660, 2001.
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.S.1
Belhumeur, P.N.2
Kriegman, D.J.3
-
28
-
-
0026065565
-
Eigenfaces for recognition
-
M. Turk and A. Pentland, "Eigenfaces for recognition, " Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.
-
(1991)
Journal of Cognitive Neuroscience
, vol.3
, Issue.1
, pp. 71-86
-
-
Turk, M.1
Pentland, A.2
-
30
-
-
0345040873
-
Classification and regression by randomforest
-
A. Liaw and M. Wiener, "Classification and regression by randomforest, " R News, vol. 20, no. 3, pp. 18-22, 2002.
-
(2002)
R News
, vol.20
, Issue.3
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
31
-
-
84926641729
-
Varselrf: Variable selection using forests
-
R. Diaz-Uriarte, "varselrf: variable selection using random forests, " R package version 0. 7-1, 2009, http://ligarto.org/rdiaz/Software/Software.html.
-
(2009)
R Package Version
, vol.0
, pp. 7-1
-
-
Diaz-Uriarte, R.1
-
32
-
-
77953166503
-
Glmnet: Lasso and elastic-net regularized generalized linear models
-
pages 1-1
-
J. H. Friedman, T. J. Hastie, and R. J. Tibshirani, "glmnet: Lasso and elastic-net regularized generalized linear models, " R package version, pages 1-1, 2010, http://CRAN.R-project.org/package=glmnet.
-
(2010)
R Package Version
-
-
Friedman, J.H.1
Hastie, T.J.2
Tibshirani, R.J.3
|