메뉴 건너뛰기




Volumn 32, Issue 4, 2015, Pages 399-407

Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

Author keywords

Aldehyde reductase family; Direct enzyme assay; Gene annotation; in situ detoxification; Saccharomyces cerevisiae

Indexed keywords

ALDEHYDE; ALDEHYDE REDUCTASE; BIOFUEL; LYSINE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SERINE; TYROSINE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SACCHAROMYCES CEREVISIAE PROTEIN; YDR541C PROTEIN, S CEREVISIAE; YGL039W PROTEIN, S CEREVISIAE;

EID: 84926418752     PISSN: 0749503X     EISSN: 10970061     Source Type: Journal    
DOI: 10.1002/yea.3067     Document Type: Article
Times cited : (23)

References (32)
  • 1
    • 50149097958 scopus 로고    scopus 로고
    • Synthesis of optically pure 2-azido-1-arylethanols with isolated enzymes and conversion to triazole-containing β-blocker analogues employing click chemistry
    • Ankati H, Yang Y, Zhu D, et al. 2008. Synthesis of optically pure 2-azido-1-arylethanols with isolated enzymes and conversion to triazole-containing β-blocker analogues employing click chemistry. J Org Chem 15: 6433-6436.
    • (2008) J Org Chem , vol.15 , pp. 6433-6436
    • Ankati, H.1    Yang, Y.2    Zhu, D.3
  • 2
    • 2642574128 scopus 로고    scopus 로고
    • Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast
    • Baxter SM, Rosenblum JS, Knutson S, et al. 2004. Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol Cell Proteomics 3: 209-225.
    • (2004) Mol Cell Proteomics , vol.3 , pp. 209-225
    • Baxter, S.M.1    Rosenblum, J.S.2    Knutson, S.3
  • 3
    • 77955566213 scopus 로고    scopus 로고
    • Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification
    • Bowman MJ, Jordan DB, Vermillion KE, et al. 2010. Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification. Appl Environ Microbiol 76: 4926-4932.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 4926-4932
    • Bowman, M.J.1    Jordan, D.B.2    Vermillion, K.E.3
  • 4
    • 27744553021 scopus 로고    scopus 로고
    • Enantiodivergent, biocatalytic routes to both taxol side chain antipodes
    • Feske BD, Kaluzna IA, Stewart JD. 2005. Enantiodivergent, biocatalytic routes to both taxol side chain antipodes. J Org Chem 11: 9654-9657.
    • (2005) J Org Chem , vol.11 , pp. 9654-9657
    • Feske, B.D.1    Kaluzna, I.A.2    Stewart, J.D.3
  • 5
    • 0032768193 scopus 로고    scopus 로고
    • Three genes whose expression is induced by stress in Saccharomyces cerevisiae
    • Garay-Arroyo A, Covarrubias AA. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 5: 879-892.
    • (1999) Yeast , vol.5 , pp. 879-892
    • Garay-Arroyo, A.1    Covarrubias, A.A.2
  • 6
    • 73249132552 scopus 로고    scopus 로고
    • Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases
    • Heer D, Heine D, Sauer U. 2009. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75: 7631-7638.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 7631-7638
    • Heer, D.1    Heine, D.2    Sauer, U.3
  • 7
    • 63549111090 scopus 로고    scopus 로고
    • Simultaneous synthesis of 2-phenylethanol and l-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway
    • Hwang JY, Park J, Seo JH, et al. 2009. Simultaneous synthesis of 2-phenylethanol and l-homophenylalanine using aromatic transaminase with yeast Ehrlich pathway. Biotechnol Bioeng 102: 1323-1329.
    • (2009) Biotechnol Bioeng , vol.102 , pp. 1323-1329
    • Hwang, J.Y.1    Park, J.2    Seo, J.H.3
  • 8
    • 13844271482 scopus 로고    scopus 로고
    • Genoe-scale gene function prediction using multiple sources of high-throughput data in Saccharomyces cerevisiae
    • Joshi T, Chen Y, Becker JM, et al. 2004. Genoe-scale gene function prediction using multiple sources of high-throughput data in Saccharomyces cerevisiae. Omics 8: 322-333.
    • (2004) Omics , vol.8 , pp. 322-333
    • Joshi, T.1    Chen, Y.2    Becker, J.M.3
  • 9
    • 80054722473 scopus 로고    scopus 로고
    • Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural
    • Jordan DB, Braker JD, Bowman MJ, et al. 2011. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural. Biochim Biophys Acta 1814: 1686-1694.
    • (2011) Biochim Biophys Acta , vol.1814 , pp. 1686-1694
    • Jordan, D.B.1    Braker, J.D.2    Bowman, M.J.3
  • 10
    • 11844281492 scopus 로고    scopus 로고
    • Stereoselective, biocatalytic reductions of α-chloro-β-keto esters
    • Kaluzna IA, Feske BD, Wittayanan W, et al. 2005. Stereoselective, biocatalytic reductions of α-chloro-β-keto esters. J Org Chem 70: 342-345.
    • (2005) J Org Chem , vol.70 , pp. 342-345
    • Kaluzna, I.A.1    Feske, B.D.2    Wittayanan, W.3
  • 11
    • 0242291798 scopus 로고    scopus 로고
    • Efficient anaerobic whole cell stereoselective bioreduction with recombinant Saccharomyces cerevisiae
    • Katz M, Frejd T, Hahn-Hägerdal B, et al. 2003. Efficient anaerobic whole cell stereoselective bioreduction with recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 5: 573-582.
    • (2003) Biotechnol Bioeng , vol.5 , pp. 573-582
    • Katz, M.1    Frejd, T.2    Hahn-Hägerdal, B.3
  • 12
    • 58149133711 scopus 로고    scopus 로고
    • The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes
    • Kavanagh KL, Jörnvall H, Persson M, Oppermann U. 2008. The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65: 3895-3906.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 3895-3906
    • Kavanagh, K.L.1    Jörnvall, H.2    Persson, M.3    Oppermann, U.4
  • 13
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke HB, Thomsen AB, Ahring BK. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66: 10-26.
    • (2004) Appl Microbiol Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 14
    • 11144283154 scopus 로고    scopus 로고
    • Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock
    • Krantz M, Nordlander B, Valadi H, et al. 2004. Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot Cell 3: 1381-1390.
    • (2004) Eukaryot Cell , vol.3 , pp. 1381-1390
    • Krantz, M.1    Nordlander, B.2    Valadi, H.3
  • 15
    • 0036182468 scopus 로고    scopus 로고
    • Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction
    • Larroy C, Fernadez MR, Gonzalez E, et al. 2002a. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J 361: 163-172.
    • (2002) Biochem J , vol.361 , pp. 163-172
    • Larroy, C.1    Fernadez, M.R.2    Gonzalez, E.3
  • 16
    • 0036433309 scopus 로고    scopus 로고
    • Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family
    • Larroy C, Pares X, Biosca JA. 2002b. Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur J Biochem 269: 5738-5745.
    • (2002) Eur J Biochem , vol.269 , pp. 5738-5745
    • Larroy, C.1    Pares, X.2    Biosca, J.A.3
  • 17
    • 0345722732 scopus 로고    scopus 로고
    • The generation of inhibitors during dilute acid hydrolysis of softwood
    • Larsson S, Palmqvist E, Hahn-Hägerdal B, et al. 1999. The generation of inhibitors during dilute acid hydrolysis of softwood. Enzyme Microtechnol 24: 151-159.
    • (1999) Enzyme Microtechnol , vol.24 , pp. 151-159
    • Larsson, S.1    Palmqvist, E.2    Hahn-Hägerdal, B.3
  • 18
    • 33750290903 scopus 로고    scopus 로고
    • Gemomic adaptation of ethanologenic yeast to biomass conversion inhibitors
    • Liu ZL. 2006. Gemomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73: 27-36.
    • (2006) Appl Microbiol Biotechnol , vol.73 , pp. 27-36
    • Liu, Z.L.1
  • 19
    • 84992281993 scopus 로고    scopus 로고
    • Transcriptome dynamics of ethanologenic yeast in response to 5-hydroxymethylfurfural stress related to biomass conversion to ethanol
    • In, Mendez-Vilas A (ed.). Wiley-VCH: Weinheim;
    • Liu ZL, Slininger PJ. 2006. Transcriptome dynamics of ethanologenic yeast in response to 5-hydroxymethylfurfural stress related to biomass conversion to ethanol. In Modern Multidisciplinary Applied Microbiology: Exploiting Microbes and Their Interactions, Mendez-Vilas A (ed.). Wiley-VCH: Weinheim; 679-685.
    • (2006) Modern Multidisciplinary Applied Microbiology: Exploiting Microbes and Their Interactions , pp. 679-685
    • Liu, Z.L.1    Slininger, P.J.2
  • 20
    • 76949102663 scopus 로고    scopus 로고
    • Lignocellulosic biomass conversion to ethanol by Saccharomyces
    • In, Vertes A, Qureshi N, Yukawa H, Blaschek H (eds). Wiley: Chichester, UK;
    • Liu ZL, Blaschek HP. 2010. Lignocellulosic biomass conversion to ethanol by Saccharomyces. In Biomass to Biofuels: Strategies for Global Industries, Vertes A, Qureshi N, Yukawa H, Blaschek H (eds). Wiley: Chichester, UK; 17-36.
    • (2010) Biomass to Biofuels: Strategies for Global Industries , pp. 17-36
    • Liu, Z.L.1    Blaschek, H.P.2
  • 21
    • 68149163548 scopus 로고    scopus 로고
    • A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion
    • Liu ZL, Moon J. 2009. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446: 1-10.
    • (2009) Gene , vol.446 , pp. 1-10
    • Liu, Z.L.1    Moon, J.2
  • 22
    • 69249214122 scopus 로고    scopus 로고
    • Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways
    • Liu ZL, Ma M, Song M. 2009. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genom 282: 233-244.
    • (2009) Mol Genet Genom , vol.282 , pp. 233-244
    • Liu, Z.L.1    Ma, M.2    Song, M.3
  • 23
    • 57249097175 scopus 로고    scopus 로고
    • Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae
    • Liu ZL, Moon J, Andersh BJ, et al. 2008. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81: 743-753.
    • (2008) Appl Microbiol Biotechnol , vol.81 , pp. 743-753
    • Liu, Z.L.1    Moon, J.2    Andersh, B.J.3
  • 24
    • 4644229547 scopus 로고    scopus 로고
    • Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran
    • Liu ZL, Slininger PJ, Dien BS, et al. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J Ind Microbiol 3: 345-352.
    • (2004) J Ind Microbiol , vol.3 , pp. 345-352
    • Liu, Z.L.1    Slininger, P.J.2    Dien, B.S.3
  • 25
    • 78549260740 scopus 로고    scopus 로고
    • Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose-derived inhibitor HMF for Saccharomyces cerevisiae
    • Ma M, Liu ZL. 2010. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose-derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 11: 660.
    • (2010) BMC Genomics , vol.11 , pp. 660
    • Ma, M.1    Liu, Z.L.2
  • 26
    • 84855451396 scopus 로고    scopus 로고
    • Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by direct enzyme evolution enhances HMF reduction using additional cofactor NADPH
    • Moon J, Liu ZL. 2012. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by direct enzyme evolution enhances HMF reduction using additional cofactor NADPH. Enzyme Microb Technol 50: 115-120.
    • (2012) Enzyme Microb Technol , vol.50 , pp. 115-120
    • Moon, J.1    Liu, Z.L.2
  • 27
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hägerdal B. 2000. Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74: 25-33.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 28
    • 33744474816 scopus 로고    scopus 로고
    • A 5-hyfroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
    • Petersson A, Almeida JRM, Modig T, et al. 2006. A 5-hyfroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23: 455-64.
    • (2006) Yeast , vol.23 , pp. 455-464
    • Petersson, A.1    Almeida, J.R.M.2    Modig, T.3
  • 29
    • 33745187154 scopus 로고    scopus 로고
    • Annotation of unknown yeast ORFs by correlation analysis of microarray data and extensive literature searches
    • Pir P, Ülgen KÖ, Hayes A, et al. 2006. Annotation of unknown yeast ORFs by correlation analysis of microarray data and extensive literature searches. Yeast 23: 553-571.
    • (2006) Yeast , vol.23 , pp. 553-571
    • Pir, P.1    Ülgen, KO.2    Hayes, A.3
  • 30
    • 0034971791 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage
    • Rep M, Proft M, Remize F, et al. 2001. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol Microbiol 40: 1067-1083.
    • (2001) Mol Microbiol , vol.40 , pp. 1067-1083
    • Rep, M.1    Proft, M.2    Remize, F.3
  • 32
    • 84863930599 scopus 로고    scopus 로고
    • Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural and phenol
    • Yang J, Ding MZ, Li BZ, et al. 2012. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural and phenol. Omics J Integ Biol 16: 374-386.
    • (2012) Omics J Integ Biol , vol.16 , pp. 374-386
    • Yang, J.1    Ding, M.Z.2    Li, B.Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.