-
1
-
-
84902550626
-
Expression-based network biology identifies immune-related functional modules involved in plant defense
-
Tully J.P., et al. Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics 2014, 15:421.
-
(2014)
BMC Genomics
, vol.15
, pp. 421
-
-
Tully, J.P.1
-
2
-
-
0033119581
-
The TCP domain: a motif found in proteins regulating plant growth and development
-
Cubas P., et al. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 1999, 18:215-222.
-
(1999)
Plant J.
, vol.18
, pp. 215-222
-
-
Cubas, P.1
-
3
-
-
33745163228
-
Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots
-
Howarth D.G., Donoghue M.J. Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:9101-9106.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 9101-9106
-
-
Howarth, D.G.1
Donoghue, M.J.2
-
4
-
-
34547652978
-
TCP transcription factors predate the emergence of land plants
-
Navaud O., et al. TCP transcription factors predate the emergence of land plants. J. Mol. Evol. 2007, 65:23-33.
-
(2007)
J. Mol. Evol.
, vol.65
, pp. 23-33
-
-
Navaud, O.1
-
5
-
-
73449098946
-
TCP genes: a family snapshot ten years later
-
Martin-Trillo M., Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010, 15:31-39.
-
(2010)
Trends Plant Sci.
, vol.15
, pp. 31-39
-
-
Martin-Trillo, M.1
Cubas, P.2
-
6
-
-
84855296031
-
Determinants of the DNA binding specificity of class I and class II TCP transcription factors
-
Viola I.L., et al. Determinants of the DNA binding specificity of class I and class II TCP transcription factors. J. Biol. Chem. 2012, 287:347-356.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 347-356
-
-
Viola, I.L.1
-
7
-
-
84879791520
-
[The role of miR319 in plant development regulation]
-
Luo M., et al. [The role of miR319 in plant development regulation]. Yi Chuan 2011, 33:1203-1211.
-
(2011)
Yi Chuan
, vol.33
, pp. 1203-1211
-
-
Luo, M.1
-
8
-
-
84883311905
-
Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots
-
Citerne H.L., et al. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. PLoS ONE 2013, 8:e74803.
-
(2013)
PLoS ONE
, vol.8
, pp. e74803
-
-
Citerne, H.L.1
-
9
-
-
84896057075
-
New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity
-
Bhattacharjee S., et al. New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. Front. Plant Sci. 2013, 4:364.
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 364
-
-
Bhattacharjee, S.1
-
10
-
-
84901002675
-
Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development
-
Aguilar-Martinez J.A., Sinha N. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front. Plant Sci. 2013, 4:406.
-
(2013)
Front. Plant Sci.
, vol.4
, pp. 406
-
-
Aguilar-Martinez, J.A.1
Sinha, N.2
-
11
-
-
84864715467
-
Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically
-
Danisman S., et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 2012, 159:1511-1523.
-
(2012)
Plant Physiol.
, vol.159
, pp. 1511-1523
-
-
Danisman, S.1
-
12
-
-
84891532024
-
Analysis of functional redundancies within the Arabidopsis TCP transcription factor family
-
Danisman S., et al. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J. Exp. Bot. 2013, 64:5673-5685.
-
(2013)
J. Exp. Bot.
, vol.64
, pp. 5673-5685
-
-
Danisman, S.1
-
13
-
-
84899458939
-
Role of microRNA319 in creeping bentgrass salinity and drought stress response
-
Zhou M., Luo H. Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav. 2014, 9:e28700.
-
(2014)
Plant Signal Behav.
, vol.9
, pp. e28700
-
-
Zhou, M.1
Luo, H.2
-
14
-
-
84903171240
-
Identification, cloning and characterization of the tomato TCP transcription factor family
-
Parapunova V., et al. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol. 2014, 14:157.
-
(2014)
BMC Plant Biol.
, vol.14
, pp. 157
-
-
Parapunova, V.1
-
15
-
-
84886395963
-
Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.)
-
Yang C., et al. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ. 2013, 36:2207-2218.
-
(2013)
Plant Cell Environ.
, vol.36
, pp. 2207-2218
-
-
Yang, C.1
-
16
-
-
79961176506
-
TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana
-
An J., et al. TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana. Plant Signal. Behav. 2011, 6:1117-1118.
-
(2011)
Plant Signal. Behav.
, vol.6
, pp. 1117-1118
-
-
An, J.1
-
17
-
-
62449114708
-
A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock
-
Pruneda-Paz J.L., et al. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 2009, 323:1481-1485.
-
(2009)
Science
, vol.323
, pp. 1481-1485
-
-
Pruneda-Paz, J.L.1
-
18
-
-
84857780876
-
Evidence for network evolution in an Arabidopsis interactome map
-
Arabidopsis Interactome Mapping Consortium
-
Evidence for network evolution in an Arabidopsis interactome map. Science 2011, 333:601-607. Arabidopsis Interactome Mapping Consortium.
-
(2011)
Science
, vol.333
, pp. 601-607
-
-
-
19
-
-
84876064426
-
Sweet immunity in the plant circadian regulatory network
-
Bolouri Moghaddam M.R., Van den Ende W. Sweet immunity in the plant circadian regulatory network. J. Exp. Bot. 2013, 64:1439-1449.
-
(2013)
J. Exp. Bot.
, vol.64
, pp. 1439-1449
-
-
Bolouri Moghaddam, M.R.1
Van den Ende, W.2
-
20
-
-
84865846822
-
Hormonal modulation of plant immunity
-
Pieterse C.M., et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28:489-521.
-
(2012)
Annu. Rev. Cell Dev. Biol.
, vol.28
, pp. 489-521
-
-
Pieterse, C.M.1
-
21
-
-
33751100626
-
The plant immune system
-
Jones J.D., Dangl J.L. The plant immune system. Nature 2006, 444:323-329.
-
(2006)
Nature
, vol.444
, pp. 323-329
-
-
Jones, J.D.1
Dangl, J.L.2
-
22
-
-
84903723588
-
Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions
-
Garbutt C.C., et al. Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions. Front Plant Sci. 2014, 5:312.
-
(2014)
Front Plant Sci.
, vol.5
, pp. 312
-
-
Garbutt, C.C.1
-
23
-
-
84883270109
-
Engineering NLR immune receptors for broad-spectrum disease resistance
-
Mukhtar M.S. Engineering NLR immune receptors for broad-spectrum disease resistance. Trends Plant Sci. 2013, 18:469-472.
-
(2013)
Trends Plant Sci.
, vol.18
, pp. 469-472
-
-
Mukhtar, M.S.1
-
24
-
-
84880786504
-
Tell me more: roles of NPRs in plant immunity
-
Pajerowska-Mukhtar K.M., et al. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 2013, 18:402-411.
-
(2013)
Trends Plant Sci.
, vol.18
, pp. 402-411
-
-
Pajerowska-Mukhtar, K.M.1
-
25
-
-
79960957705
-
Independently evolved virulence effectors converge onto hubs in a plant immune system network
-
Mukhtar M.S., et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 2011, 333:596-601.
-
(2011)
Science
, vol.333
, pp. 596-601
-
-
Mukhtar, M.S.1
-
26
-
-
84907694694
-
Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life
-
Wessling R., et al. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 2014, 16:364-375.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 364-375
-
-
Wessling, R.1
-
27
-
-
84926410976
-
A conserved oomycete CRN effector targets and modulates tomato TCP14-2 to enhance virulence
-
Published online December 11, 2013.
-
Stam R.M., et al. A conserved oomycete CRN effector targets and modulates tomato TCP14-2 to enhance virulence. BioRxiv 2013, Published online December 11, 2013. http://dx.doi.org/10.1101/001248.
-
(2013)
BioRxiv
-
-
Stam, R.M.1
-
28
-
-
84902303113
-
The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity
-
Kim S.H., et al. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J. 2014, 78:978-989.
-
(2014)
Plant J.
, vol.78
, pp. 978-989
-
-
Kim, S.H.1
-
29
-
-
78149350218
-
SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity
-
Li Y., et al. SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLoS Pathog. 2010, 6:e1001111.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1001111
-
-
Li, Y.1
-
30
-
-
58149105395
-
SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors
-
Kwon S.I., et al. SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors. Plant J. 2009, 57:109-119.
-
(2009)
Plant J.
, vol.57
, pp. 109-119
-
-
Kwon, S.I.1
-
31
-
-
68249161209
-
Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1
-
Kim S.H., et al. Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1. Plant Physiol. 2009, 150:1723-1732.
-
(2009)
Plant Physiol.
, vol.150
, pp. 1723-1732
-
-
Kim, S.H.1
-
32
-
-
59449096050
-
Regulation of defense gene expression by Arabidopsis SRFR1
-
Kim S.H., et al. Regulation of defense gene expression by Arabidopsis SRFR1. Plant Signal. Behav. 2009, 4:149-150.
-
(2009)
Plant Signal. Behav.
, vol.4
, pp. 149-150
-
-
Kim, S.H.1
-
33
-
-
79251530750
-
The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4
-
Kim S.H., et al. The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4. PLoS Pathog. 2010, 6:e1001172.
-
(2010)
PLoS Pathog.
, vol.6
, pp. e1001172
-
-
Kim, S.H.1
-
34
-
-
84863299556
-
Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks
-
Gassmann W., Bhattacharjee S. Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks. Mol. Plant Microbe Interact. 2012, 25:862-868.
-
(2012)
Mol. Plant Microbe Interact.
, vol.25
, pp. 862-868
-
-
Gassmann, W.1
Bhattacharjee, S.2
-
35
-
-
83255164814
-
Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses
-
Heidrich K., et al. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 2011, 334:1401-1404.
-
(2011)
Science
, vol.334
, pp. 1401-1404
-
-
Heidrich, K.1
-
36
-
-
83255188814
-
Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators
-
Bhattacharjee S., et al. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 2011, 334:1405-1408.
-
(2011)
Science
, vol.334
, pp. 1405-1408
-
-
Bhattacharjee, S.1
-
37
-
-
79956212560
-
MOS1 epigenetically regulates the expression of plant Resistance gene SNC1
-
Li Y., et al. MOS1 epigenetically regulates the expression of plant Resistance gene SNC1. Plant Signal. Behav. 2011, 6:434-436.
-
(2011)
Plant Signal. Behav.
, vol.6
, pp. 434-436
-
-
Li, Y.1
-
38
-
-
54749156380
-
Control of jasmonate biosynthesis and senescence by miR319 targets
-
Schommer C., et al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008, 6:e230.
-
(2008)
PLoS Biol.
, vol.6
, pp. e230
-
-
Schommer, C.1
-
39
-
-
84875290522
-
Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses
-
Efroni I., et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev. Cell 2013, 24:438-445.
-
(2013)
Dev. Cell
, vol.24
, pp. 438-445
-
-
Efroni, I.1
-
40
-
-
84898019928
-
The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization
-
Sugio A., et al. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol. 2014, 202:838-848.
-
(2014)
New Phytol.
, vol.202
, pp. 838-848
-
-
Sugio, A.1
-
41
-
-
82755186471
-
Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis
-
Sugio A., et al. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:E1254-E1263.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. E1254-E1263
-
-
Sugio, A.1
-
42
-
-
84897667493
-
Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses
-
Lu Y.T., et al. Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiol. 2014, 164:1456-1469.
-
(2014)
Plant Physiol.
, vol.164
, pp. 1456-1469
-
-
Lu, Y.T.1
-
43
-
-
84900408076
-
Post-translational cleavage and self-interaction of the phytoplasma effector SAP11
-
Lu Y.T., et al. Post-translational cleavage and self-interaction of the phytoplasma effector SAP11. Plant Signal. Behav. 2014, 9:e28991.
-
(2014)
Plant Signal. Behav.
, vol.9
, pp. e28991
-
-
Lu, Y.T.1
-
44
-
-
84855254094
-
The TOPLESS interactome: a framework for gene repression in Arabidopsis
-
Causier B., et al. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol. 2012, 158:423-438.
-
(2012)
Plant Physiol.
, vol.158
, pp. 423-438
-
-
Causier, B.1
-
45
-
-
33744992478
-
TOPLESS regulates apical embryonic fate in Arabidopsis
-
Long J.A., et al. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 2006, 312:1520-1523.
-
(2006)
Science
, vol.312
, pp. 1520-1523
-
-
Long, J.A.1
-
46
-
-
80053564805
-
TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis
-
Kieffer M., et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 2011, 68:147-158.
-
(2011)
Plant J.
, vol.68
, pp. 147-158
-
-
Kieffer, M.1
-
47
-
-
84906327668
-
Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height
-
Daviere J.M., et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr. Biol. 2014, 24:1923-1928.
-
(2014)
Curr. Biol.
, vol.24
, pp. 1923-1928
-
-
Daviere, J.M.1
-
48
-
-
84857701849
-
The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers
-
Steiner E., et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 2012, 24:96-108.
-
(2012)
Plant Cell
, vol.24
, pp. 96-108
-
-
Steiner, E.1
-
49
-
-
77956567811
-
KNOX genes: versatile regulators of plant development and diversity
-
Hay A., Tsiantis M. KNOX genes: versatile regulators of plant development and diversity. Development 2010, 137:3153-3165.
-
(2010)
Development
, vol.137
, pp. 3153-3165
-
-
Hay, A.1
Tsiantis, M.2
-
50
-
-
84862554451
-
TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana
-
Li Z., et al. TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. Plant J. 2012, 71:99-107.
-
(2012)
Plant J.
, vol.71
, pp. 99-107
-
-
Li, Z.1
-
51
-
-
84879528088
-
Crosstalk between the circadian clock and innate immunity in Arabidopsis
-
Zhang C., et al. Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog. 2013, 9:e1003370.
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003370
-
-
Zhang, C.1
-
52
-
-
79551662808
-
Timing of plant immune responses by a central circadian regulator
-
Wang W., et al. Timing of plant immune responses by a central circadian regulator. Nature 2011, 470:110-114.
-
(2011)
Nature
, vol.470
, pp. 110-114
-
-
Wang, W.1
-
53
-
-
84921290781
-
The circadian clock and defence signalling in plants
-
Published online July 31, 2014.
-
Sharma M., Bhatt D. The circadian clock and defence signalling in plants. Mol. Plant Pathol. 2014, Published online July 31, 2014. http://dx.doi.org/10.1111/mpp.12178.
-
(2014)
Mol. Plant Pathol.
-
-
Sharma, M.1
Bhatt, D.2
-
54
-
-
0037256650
-
Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis
-
Mas P., et al. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 2003, 15:223-236.
-
(2003)
Plant Cell
, vol.15
, pp. 223-236
-
-
Mas, P.1
-
55
-
-
84875222858
-
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7
-
Nicaise V., et al. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J. 2013, 32:701-712.
-
(2013)
EMBO J.
, vol.32
, pp. 701-712
-
-
Nicaise, V.1
-
56
-
-
34249064705
-
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity
-
Fu Z.Q., et al. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 2007, 447:284-288.
-
(2007)
Nature
, vol.447
, pp. 284-288
-
-
Fu, Z.Q.1
-
57
-
-
79551633211
-
TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana
-
Giraud E., et al. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 2010, 22:3921-3934.
-
(2010)
Plant Cell
, vol.22
, pp. 3921-3934
-
-
Giraud, E.1
-
58
-
-
84876533204
-
TCP transcription factors: architectures of plant form
-
Uberti-Manassero N.G., et al. TCP transcription factors: architectures of plant form. Biomol. Concepts 2013, 4:111-127.
-
(2013)
Biomol. Concepts
, vol.4
, pp. 111-127
-
-
Uberti-Manassero, N.G.1
-
59
-
-
77953199469
-
Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis
-
Aggarwal P., et al. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 2010, 22:1174-1189.
-
(2010)
Plant Cell
, vol.22
, pp. 1174-1189
-
-
Aggarwal, P.1
-
60
-
-
84890309230
-
TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana
-
Li S., Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J. 2013, 76:901-913.
-
(2013)
Plant J.
, vol.76
, pp. 901-913
-
-
Li, S.1
Zachgo, S.2
-
61
-
-
63549086879
-
In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development
-
Herve C., et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant Physiol. 2009, 149:1462-1477.
-
(2009)
Plant Physiol.
, vol.149
, pp. 1462-1477
-
-
Herve, C.1
-
62
-
-
84855902597
-
The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins
-
Uberti-Manassero N.G., et al. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. J. Exp. Bot. 2012, 63:809-823.
-
(2012)
J. Exp. Bot.
, vol.63
, pp. 809-823
-
-
Uberti-Manassero, N.G.1
-
63
-
-
84908057727
-
Repression of cell proliferation by miR319-regulated TCP4
-
Published online July 22, 2014.
-
Schommer C., et al. Repression of cell proliferation by miR319-regulated TCP4. Mol. Plant. 2014, Published online July 22, 2014. http://dx.doi.org/10.1093/mp/ssu084.
-
(2014)
Mol. Plant.
-
-
Schommer, C.1
-
64
-
-
76049118057
-
MiR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis
-
Nag A., et al. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:22534-22539.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 22534-22539
-
-
Nag, A.1
-
65
-
-
0141493493
-
Control of leaf morphogenesis by microRNAs
-
Palatnik J.F., et al. Control of leaf morphogenesis by microRNAs. Nature 2003, 425:257-263.
-
(2003)
Nature
, vol.425
, pp. 257-263
-
-
Palatnik, J.F.1
-
66
-
-
34250832061
-
Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319
-
Palatnik J.F., et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev. Cell 2007, 13:115-125.
-
(2007)
Dev. Cell
, vol.13
, pp. 115-125
-
-
Palatnik, J.F.1
-
67
-
-
84855936641
-
Regulation of miR319 during cold stress in sugarcane
-
Thiebaut F., et al. Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ. 2012, 35:502-512.
-
(2012)
Plant Cell Environ.
, vol.35
, pp. 502-512
-
-
Thiebaut, F.1
-
68
-
-
78650854673
-
TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis
-
Koyama T., et al. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 2010, 22:3574-3588.
-
(2010)
Plant Cell
, vol.22
, pp. 3574-3588
-
-
Koyama, T.1
-
69
-
-
84895557335
-
The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust
-
Feng H., et al. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol. Plant Pathol. 2014, 15:284-296.
-
(2014)
Mol. Plant Pathol.
, vol.15
, pp. 284-296
-
-
Feng, H.1
|