메뉴 건너뛰기




Volumn 20, Issue 4, 2015, Pages 238-245

TCP three-way handshake: Linking developmental processes with plant immunity

Author keywords

Circadian clock; Hormonal network; MiR319; Pathogen effectors; SAP11; SRFR1; TCP factors; Transcriptional control

Indexed keywords

TRANSCRIPTION FACTOR; VEGETABLE PROTEIN;

EID: 84926409170     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2015.01.005     Document Type: Review
Times cited : (99)

References (69)
  • 1
    • 84902550626 scopus 로고    scopus 로고
    • Expression-based network biology identifies immune-related functional modules involved in plant defense
    • Tully J.P., et al. Expression-based network biology identifies immune-related functional modules involved in plant defense. BMC Genomics 2014, 15:421.
    • (2014) BMC Genomics , vol.15 , pp. 421
    • Tully, J.P.1
  • 2
    • 0033119581 scopus 로고    scopus 로고
    • The TCP domain: a motif found in proteins regulating plant growth and development
    • Cubas P., et al. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J. 1999, 18:215-222.
    • (1999) Plant J. , vol.18 , pp. 215-222
    • Cubas, P.1
  • 3
    • 33745163228 scopus 로고    scopus 로고
    • Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots
    • Howarth D.G., Donoghue M.J. Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:9101-9106.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 9101-9106
    • Howarth, D.G.1    Donoghue, M.J.2
  • 4
    • 34547652978 scopus 로고    scopus 로고
    • TCP transcription factors predate the emergence of land plants
    • Navaud O., et al. TCP transcription factors predate the emergence of land plants. J. Mol. Evol. 2007, 65:23-33.
    • (2007) J. Mol. Evol. , vol.65 , pp. 23-33
    • Navaud, O.1
  • 5
    • 73449098946 scopus 로고    scopus 로고
    • TCP genes: a family snapshot ten years later
    • Martin-Trillo M., Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010, 15:31-39.
    • (2010) Trends Plant Sci. , vol.15 , pp. 31-39
    • Martin-Trillo, M.1    Cubas, P.2
  • 6
    • 84855296031 scopus 로고    scopus 로고
    • Determinants of the DNA binding specificity of class I and class II TCP transcription factors
    • Viola I.L., et al. Determinants of the DNA binding specificity of class I and class II TCP transcription factors. J. Biol. Chem. 2012, 287:347-356.
    • (2012) J. Biol. Chem. , vol.287 , pp. 347-356
    • Viola, I.L.1
  • 7
    • 84879791520 scopus 로고    scopus 로고
    • [The role of miR319 in plant development regulation]
    • Luo M., et al. [The role of miR319 in plant development regulation]. Yi Chuan 2011, 33:1203-1211.
    • (2011) Yi Chuan , vol.33 , pp. 1203-1211
    • Luo, M.1
  • 8
    • 84883311905 scopus 로고    scopus 로고
    • Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots
    • Citerne H.L., et al. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots. PLoS ONE 2013, 8:e74803.
    • (2013) PLoS ONE , vol.8 , pp. e74803
    • Citerne, H.L.1
  • 9
    • 84896057075 scopus 로고    scopus 로고
    • New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity
    • Bhattacharjee S., et al. New clues in the nucleus: transcriptional reprogramming in effector-triggered immunity. Front. Plant Sci. 2013, 4:364.
    • (2013) Front. Plant Sci. , vol.4 , pp. 364
    • Bhattacharjee, S.1
  • 10
    • 84901002675 scopus 로고    scopus 로고
    • Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development
    • Aguilar-Martinez J.A., Sinha N. Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front. Plant Sci. 2013, 4:406.
    • (2013) Front. Plant Sci. , vol.4 , pp. 406
    • Aguilar-Martinez, J.A.1    Sinha, N.2
  • 11
    • 84864715467 scopus 로고    scopus 로고
    • Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically
    • Danisman S., et al. Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiol. 2012, 159:1511-1523.
    • (2012) Plant Physiol. , vol.159 , pp. 1511-1523
    • Danisman, S.1
  • 12
    • 84891532024 scopus 로고    scopus 로고
    • Analysis of functional redundancies within the Arabidopsis TCP transcription factor family
    • Danisman S., et al. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J. Exp. Bot. 2013, 64:5673-5685.
    • (2013) J. Exp. Bot. , vol.64 , pp. 5673-5685
    • Danisman, S.1
  • 13
    • 84899458939 scopus 로고    scopus 로고
    • Role of microRNA319 in creeping bentgrass salinity and drought stress response
    • Zhou M., Luo H. Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav. 2014, 9:e28700.
    • (2014) Plant Signal Behav. , vol.9 , pp. e28700
    • Zhou, M.1    Luo, H.2
  • 14
    • 84903171240 scopus 로고    scopus 로고
    • Identification, cloning and characterization of the tomato TCP transcription factor family
    • Parapunova V., et al. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol. 2014, 14:157.
    • (2014) BMC Plant Biol. , vol.14 , pp. 157
    • Parapunova, V.1
  • 15
    • 84886395963 scopus 로고    scopus 로고
    • Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.)
    • Yang C., et al. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ. 2013, 36:2207-2218.
    • (2013) Plant Cell Environ. , vol.36 , pp. 2207-2218
    • Yang, C.1
  • 16
    • 79961176506 scopus 로고    scopus 로고
    • TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana
    • An J., et al. TCP1 positively regulates the expression of DWF4 in Arabidopsis thaliana. Plant Signal. Behav. 2011, 6:1117-1118.
    • (2011) Plant Signal. Behav. , vol.6 , pp. 1117-1118
    • An, J.1
  • 17
    • 62449114708 scopus 로고    scopus 로고
    • A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock
    • Pruneda-Paz J.L., et al. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 2009, 323:1481-1485.
    • (2009) Science , vol.323 , pp. 1481-1485
    • Pruneda-Paz, J.L.1
  • 18
    • 84857780876 scopus 로고    scopus 로고
    • Evidence for network evolution in an Arabidopsis interactome map
    • Arabidopsis Interactome Mapping Consortium
    • Evidence for network evolution in an Arabidopsis interactome map. Science 2011, 333:601-607. Arabidopsis Interactome Mapping Consortium.
    • (2011) Science , vol.333 , pp. 601-607
  • 19
    • 84876064426 scopus 로고    scopus 로고
    • Sweet immunity in the plant circadian regulatory network
    • Bolouri Moghaddam M.R., Van den Ende W. Sweet immunity in the plant circadian regulatory network. J. Exp. Bot. 2013, 64:1439-1449.
    • (2013) J. Exp. Bot. , vol.64 , pp. 1439-1449
    • Bolouri Moghaddam, M.R.1    Van den Ende, W.2
  • 20
    • 84865846822 scopus 로고    scopus 로고
    • Hormonal modulation of plant immunity
    • Pieterse C.M., et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28:489-521.
    • (2012) Annu. Rev. Cell Dev. Biol. , vol.28 , pp. 489-521
    • Pieterse, C.M.1
  • 21
    • 33751100626 scopus 로고    scopus 로고
    • The plant immune system
    • Jones J.D., Dangl J.L. The plant immune system. Nature 2006, 444:323-329.
    • (2006) Nature , vol.444 , pp. 323-329
    • Jones, J.D.1    Dangl, J.L.2
  • 22
    • 84903723588 scopus 로고    scopus 로고
    • Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions
    • Garbutt C.C., et al. Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions. Front Plant Sci. 2014, 5:312.
    • (2014) Front Plant Sci. , vol.5 , pp. 312
    • Garbutt, C.C.1
  • 23
    • 84883270109 scopus 로고    scopus 로고
    • Engineering NLR immune receptors for broad-spectrum disease resistance
    • Mukhtar M.S. Engineering NLR immune receptors for broad-spectrum disease resistance. Trends Plant Sci. 2013, 18:469-472.
    • (2013) Trends Plant Sci. , vol.18 , pp. 469-472
    • Mukhtar, M.S.1
  • 24
    • 84880786504 scopus 로고    scopus 로고
    • Tell me more: roles of NPRs in plant immunity
    • Pajerowska-Mukhtar K.M., et al. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 2013, 18:402-411.
    • (2013) Trends Plant Sci. , vol.18 , pp. 402-411
    • Pajerowska-Mukhtar, K.M.1
  • 25
    • 79960957705 scopus 로고    scopus 로고
    • Independently evolved virulence effectors converge onto hubs in a plant immune system network
    • Mukhtar M.S., et al. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 2011, 333:596-601.
    • (2011) Science , vol.333 , pp. 596-601
    • Mukhtar, M.S.1
  • 26
    • 84907694694 scopus 로고    scopus 로고
    • Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life
    • Wessling R., et al. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 2014, 16:364-375.
    • (2014) Cell Host Microbe , vol.16 , pp. 364-375
    • Wessling, R.1
  • 27
    • 84926410976 scopus 로고    scopus 로고
    • A conserved oomycete CRN effector targets and modulates tomato TCP14-2 to enhance virulence
    • Published online December 11, 2013.
    • Stam R.M., et al. A conserved oomycete CRN effector targets and modulates tomato TCP14-2 to enhance virulence. BioRxiv 2013, Published online December 11, 2013. http://dx.doi.org/10.1101/001248.
    • (2013) BioRxiv
    • Stam, R.M.1
  • 28
    • 84902303113 scopus 로고    scopus 로고
    • The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity
    • Kim S.H., et al. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. Plant J. 2014, 78:978-989.
    • (2014) Plant J. , vol.78 , pp. 978-989
    • Kim, S.H.1
  • 29
    • 78149350218 scopus 로고    scopus 로고
    • SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity
    • Li Y., et al. SRFR1 negatively regulates plant NB-LRR resistance protein accumulation to prevent autoimmunity. PLoS Pathog. 2010, 6:e1001111.
    • (2010) PLoS Pathog. , vol.6 , pp. e1001111
    • Li, Y.1
  • 30
    • 58149105395 scopus 로고    scopus 로고
    • SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors
    • Kwon S.I., et al. SRFR1, a suppressor of effector-triggered immunity, encodes a conserved tetratricopeptide repeat protein with similarity to transcriptional repressors. Plant J. 2009, 57:109-119.
    • (2009) Plant J. , vol.57 , pp. 109-119
    • Kwon, S.I.1
  • 31
    • 68249161209 scopus 로고    scopus 로고
    • Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1
    • Kim S.H., et al. Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1. Plant Physiol. 2009, 150:1723-1732.
    • (2009) Plant Physiol. , vol.150 , pp. 1723-1732
    • Kim, S.H.1
  • 32
    • 59449096050 scopus 로고    scopus 로고
    • Regulation of defense gene expression by Arabidopsis SRFR1
    • Kim S.H., et al. Regulation of defense gene expression by Arabidopsis SRFR1. Plant Signal. Behav. 2009, 4:149-150.
    • (2009) Plant Signal. Behav. , vol.4 , pp. 149-150
    • Kim, S.H.1
  • 33
    • 79251530750 scopus 로고    scopus 로고
    • The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4
    • Kim S.H., et al. The Arabidopsis resistance-like gene SNC1 is activated by mutations in SRFR1 and contributes to resistance to the bacterial effector AvrRps4. PLoS Pathog. 2010, 6:e1001172.
    • (2010) PLoS Pathog. , vol.6 , pp. e1001172
    • Kim, S.H.1
  • 34
    • 84863299556 scopus 로고    scopus 로고
    • Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks
    • Gassmann W., Bhattacharjee S. Effector-triggered immunity signaling: from gene-for-gene pathways to protein-protein interaction networks. Mol. Plant Microbe Interact. 2012, 25:862-868.
    • (2012) Mol. Plant Microbe Interact. , vol.25 , pp. 862-868
    • Gassmann, W.1    Bhattacharjee, S.2
  • 35
    • 83255164814 scopus 로고    scopus 로고
    • Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses
    • Heidrich K., et al. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 2011, 334:1401-1404.
    • (2011) Science , vol.334 , pp. 1401-1404
    • Heidrich, K.1
  • 36
    • 83255188814 scopus 로고    scopus 로고
    • Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators
    • Bhattacharjee S., et al. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 2011, 334:1405-1408.
    • (2011) Science , vol.334 , pp. 1405-1408
    • Bhattacharjee, S.1
  • 37
    • 79956212560 scopus 로고    scopus 로고
    • MOS1 epigenetically regulates the expression of plant Resistance gene SNC1
    • Li Y., et al. MOS1 epigenetically regulates the expression of plant Resistance gene SNC1. Plant Signal. Behav. 2011, 6:434-436.
    • (2011) Plant Signal. Behav. , vol.6 , pp. 434-436
    • Li, Y.1
  • 38
    • 54749156380 scopus 로고    scopus 로고
    • Control of jasmonate biosynthesis and senescence by miR319 targets
    • Schommer C., et al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008, 6:e230.
    • (2008) PLoS Biol. , vol.6 , pp. e230
    • Schommer, C.1
  • 39
    • 84875290522 scopus 로고    scopus 로고
    • Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses
    • Efroni I., et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses. Dev. Cell 2013, 24:438-445.
    • (2013) Dev. Cell , vol.24 , pp. 438-445
    • Efroni, I.1
  • 40
    • 84898019928 scopus 로고    scopus 로고
    • The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization
    • Sugio A., et al. The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytol. 2014, 202:838-848.
    • (2014) New Phytol. , vol.202 , pp. 838-848
    • Sugio, A.1
  • 41
    • 82755186471 scopus 로고    scopus 로고
    • Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis
    • Sugio A., et al. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:E1254-E1263.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. E1254-E1263
    • Sugio, A.1
  • 42
    • 84897667493 scopus 로고    scopus 로고
    • Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses
    • Lu Y.T., et al. Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiol. 2014, 164:1456-1469.
    • (2014) Plant Physiol. , vol.164 , pp. 1456-1469
    • Lu, Y.T.1
  • 43
    • 84900408076 scopus 로고    scopus 로고
    • Post-translational cleavage and self-interaction of the phytoplasma effector SAP11
    • Lu Y.T., et al. Post-translational cleavage and self-interaction of the phytoplasma effector SAP11. Plant Signal. Behav. 2014, 9:e28991.
    • (2014) Plant Signal. Behav. , vol.9 , pp. e28991
    • Lu, Y.T.1
  • 44
    • 84855254094 scopus 로고    scopus 로고
    • The TOPLESS interactome: a framework for gene repression in Arabidopsis
    • Causier B., et al. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol. 2012, 158:423-438.
    • (2012) Plant Physiol. , vol.158 , pp. 423-438
    • Causier, B.1
  • 45
    • 33744992478 scopus 로고    scopus 로고
    • TOPLESS regulates apical embryonic fate in Arabidopsis
    • Long J.A., et al. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 2006, 312:1520-1523.
    • (2006) Science , vol.312 , pp. 1520-1523
    • Long, J.A.1
  • 46
    • 80053564805 scopus 로고    scopus 로고
    • TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis
    • Kieffer M., et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 2011, 68:147-158.
    • (2011) Plant J. , vol.68 , pp. 147-158
    • Kieffer, M.1
  • 47
    • 84906327668 scopus 로고    scopus 로고
    • Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height
    • Daviere J.M., et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr. Biol. 2014, 24:1923-1928.
    • (2014) Curr. Biol. , vol.24 , pp. 1923-1928
    • Daviere, J.M.1
  • 48
    • 84857701849 scopus 로고    scopus 로고
    • The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers
    • Steiner E., et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 2012, 24:96-108.
    • (2012) Plant Cell , vol.24 , pp. 96-108
    • Steiner, E.1
  • 49
    • 77956567811 scopus 로고    scopus 로고
    • KNOX genes: versatile regulators of plant development and diversity
    • Hay A., Tsiantis M. KNOX genes: versatile regulators of plant development and diversity. Development 2010, 137:3153-3165.
    • (2010) Development , vol.137 , pp. 3153-3165
    • Hay, A.1    Tsiantis, M.2
  • 50
    • 84862554451 scopus 로고    scopus 로고
    • TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana
    • Li Z., et al. TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. Plant J. 2012, 71:99-107.
    • (2012) Plant J. , vol.71 , pp. 99-107
    • Li, Z.1
  • 51
    • 84879528088 scopus 로고    scopus 로고
    • Crosstalk between the circadian clock and innate immunity in Arabidopsis
    • Zhang C., et al. Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog. 2013, 9:e1003370.
    • (2013) PLoS Pathog. , vol.9 , pp. e1003370
    • Zhang, C.1
  • 52
    • 79551662808 scopus 로고    scopus 로고
    • Timing of plant immune responses by a central circadian regulator
    • Wang W., et al. Timing of plant immune responses by a central circadian regulator. Nature 2011, 470:110-114.
    • (2011) Nature , vol.470 , pp. 110-114
    • Wang, W.1
  • 53
    • 84921290781 scopus 로고    scopus 로고
    • The circadian clock and defence signalling in plants
    • Published online July 31, 2014.
    • Sharma M., Bhatt D. The circadian clock and defence signalling in plants. Mol. Plant Pathol. 2014, Published online July 31, 2014. http://dx.doi.org/10.1111/mpp.12178.
    • (2014) Mol. Plant Pathol.
    • Sharma, M.1    Bhatt, D.2
  • 54
    • 0037256650 scopus 로고    scopus 로고
    • Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis
    • Mas P., et al. Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 2003, 15:223-236.
    • (2003) Plant Cell , vol.15 , pp. 223-236
    • Mas, P.1
  • 55
    • 84875222858 scopus 로고    scopus 로고
    • Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7
    • Nicaise V., et al. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J. 2013, 32:701-712.
    • (2013) EMBO J. , vol.32 , pp. 701-712
    • Nicaise, V.1
  • 56
    • 34249064705 scopus 로고    scopus 로고
    • A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity
    • Fu Z.Q., et al. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 2007, 447:284-288.
    • (2007) Nature , vol.447 , pp. 284-288
    • Fu, Z.Q.1
  • 57
    • 79551633211 scopus 로고    scopus 로고
    • TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana
    • Giraud E., et al. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 2010, 22:3921-3934.
    • (2010) Plant Cell , vol.22 , pp. 3921-3934
    • Giraud, E.1
  • 58
    • 84876533204 scopus 로고    scopus 로고
    • TCP transcription factors: architectures of plant form
    • Uberti-Manassero N.G., et al. TCP transcription factors: architectures of plant form. Biomol. Concepts 2013, 4:111-127.
    • (2013) Biomol. Concepts , vol.4 , pp. 111-127
    • Uberti-Manassero, N.G.1
  • 59
    • 77953199469 scopus 로고    scopus 로고
    • Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis
    • Aggarwal P., et al. Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 2010, 22:1174-1189.
    • (2010) Plant Cell , vol.22 , pp. 1174-1189
    • Aggarwal, P.1
  • 60
    • 84890309230 scopus 로고    scopus 로고
    • TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana
    • Li S., Zachgo S. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J. 2013, 76:901-913.
    • (2013) Plant J. , vol.76 , pp. 901-913
    • Li, S.1    Zachgo, S.2
  • 61
    • 63549086879 scopus 로고    scopus 로고
    • In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development
    • Herve C., et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant Physiol. 2009, 149:1462-1477.
    • (2009) Plant Physiol. , vol.149 , pp. 1462-1477
    • Herve, C.1
  • 62
    • 84855902597 scopus 로고    scopus 로고
    • The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins
    • Uberti-Manassero N.G., et al. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. J. Exp. Bot. 2012, 63:809-823.
    • (2012) J. Exp. Bot. , vol.63 , pp. 809-823
    • Uberti-Manassero, N.G.1
  • 63
    • 84908057727 scopus 로고    scopus 로고
    • Repression of cell proliferation by miR319-regulated TCP4
    • Published online July 22, 2014.
    • Schommer C., et al. Repression of cell proliferation by miR319-regulated TCP4. Mol. Plant. 2014, Published online July 22, 2014. http://dx.doi.org/10.1093/mp/ssu084.
    • (2014) Mol. Plant.
    • Schommer, C.1
  • 64
    • 76049118057 scopus 로고    scopus 로고
    • MiR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis
    • Nag A., et al. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:22534-22539.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 22534-22539
    • Nag, A.1
  • 65
    • 0141493493 scopus 로고    scopus 로고
    • Control of leaf morphogenesis by microRNAs
    • Palatnik J.F., et al. Control of leaf morphogenesis by microRNAs. Nature 2003, 425:257-263.
    • (2003) Nature , vol.425 , pp. 257-263
    • Palatnik, J.F.1
  • 66
    • 34250832061 scopus 로고    scopus 로고
    • Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319
    • Palatnik J.F., et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev. Cell 2007, 13:115-125.
    • (2007) Dev. Cell , vol.13 , pp. 115-125
    • Palatnik, J.F.1
  • 67
    • 84855936641 scopus 로고    scopus 로고
    • Regulation of miR319 during cold stress in sugarcane
    • Thiebaut F., et al. Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ. 2012, 35:502-512.
    • (2012) Plant Cell Environ. , vol.35 , pp. 502-512
    • Thiebaut, F.1
  • 68
    • 78650854673 scopus 로고    scopus 로고
    • TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis
    • Koyama T., et al. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 2010, 22:3574-3588.
    • (2010) Plant Cell , vol.22 , pp. 3574-3588
    • Koyama, T.1
  • 69
    • 84895557335 scopus 로고    scopus 로고
    • The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust
    • Feng H., et al. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol. Plant Pathol. 2014, 15:284-296.
    • (2014) Mol. Plant Pathol. , vol.15 , pp. 284-296
    • Feng, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.