-
1
-
-
0027730383
-
Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
-
Wightman B, Ha I, Ruvkun G, (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862. 8252622
-
(1993)
Cell
, vol.75
, pp. 855-862
-
-
Wightman, B.1
Ha, I.2
Ruvkun, G.3
-
2
-
-
0027751663
-
The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
-
Lee RC, Feinbaum RL, Ambros V, (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854. 8252621
-
(1993)
Cell
, vol.75
, pp. 843-854
-
-
Lee, R.C.1
Feinbaum, R.L.2
Ambros, V.3
-
3
-
-
0034708122
-
The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans
-
Reinhart BJ, Slack FJ, Basson M, Pasquinelli a E, Bettinger JC, et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906. 10706289
-
(2000)
Nature
, vol.403
, pp. 901-906
-
-
Reinhart, B.J.1
Slack, F.J.2
Basson, M.3
Pasquinelli a, E.4
Bettinger, J.C.5
-
4
-
-
0037693842
-
The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target
-
Lin S-Y, Johnson SM, Abraham M, Vella MC, Pasquinelli A, et al. (2003) The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 4: 639–650. 12737800
-
(2003)
Dev Cell
, vol.4
, pp. 639-650
-
-
Lin, S.-Y.1
Johnson, S.M.2
Abraham, M.3
Vella, M.C.4
Pasquinelli, A.5
-
5
-
-
0030970775
-
The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA
-
Moss EG, Lee RC, Ambros V, (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88: 637–646. 9054503
-
(1997)
Cell
, vol.88
, pp. 637-646
-
-
Moss, E.G.1
Lee, R.C.2
Ambros, V.3
-
6
-
-
0033935425
-
Control of developmental timing in Caenorhabditis elegans
-
Ambros V, (2000) Control of developmental timing in Caenorhabditis elegans. Curr Opin Genet Dev 10: 428–433. 10889059
-
(2000)
Curr Opin Genet Dev
, vol.10
, pp. 428-433
-
-
Ambros, V.1
-
7
-
-
77951559985
-
miRNAs give worms the time of their lives: small RNAs and temporal control in Caenorhabditis elegans
-
Resnick TD, McCulloch K a, Rougvie AE, (2010) miRNAs give worms the time of their lives: small RNAs and temporal control in Caenorhabditis elegans. Dev Dyn 239: 1477–1489. doi: 10.1002/dvdy.22260 20232378
-
(2010)
Dev Dyn
, vol.239
, pp. 1477-1489
-
-
Resnick, T.D.1
McCulloch, K.2
Rougvie, A.E.3
-
8
-
-
79960924567
-
MicroRNAs and developmental timing
-
Ambros V, (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21: 511–517. doi: 10.1016/j.gde.2011.04.003 21530229
-
(2011)
Curr Opin Genet Dev
, vol.21
, pp. 511-517
-
-
Ambros, V.1
-
9
-
-
81855183636
-
Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms
-
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, et al. (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147: 1066–1079. doi: 10.1016/j.cell.2011.10.039 22118463
-
(2011)
Cell
, vol.147
, pp. 1066-1079
-
-
Piskounova, E.1
Polytarchou, C.2
Thornton, J.E.3
LaPierre, R.J.4
Pothoulakis, C.5
-
10
-
-
53949088050
-
Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA
-
Heo I, Joo C, Cho J, Ha M, Han J, et al. (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32: 276–284. doi: 10.1016/j.molcel.2008.09.014 18951094
-
(2008)
Mol Cell
, vol.32
, pp. 276-284
-
-
Heo, I.1
Joo, C.2
Cho, J.3
Ha, M.4
Han, J.5
-
11
-
-
79952360425
-
LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans
-
Van Wynsberghe PM, Kai ZS, Massirer KB, Burton VH, Yeo GW, et al. (2011) LIN-28 co-transcriptionally binds primary let-7 to regulate miRNA maturation in Caenorhabditis elegans. Nat Struct Mol Biol 18: 302–308. doi: 10.1038/nsmb.1986 21297634
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 302-308
-
-
Van Wynsberghe, P.M.1
Kai, Z.S.2
Massirer, K.B.3
Burton, V.H.4
Yeo, G.W.5
-
12
-
-
0942301280
-
The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3’UTR
-
Vella MC, Choi E-Y, Lin S-Y, Reinert K, Slack FJ, (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3’UTR. Genes Dev 18: 132–137. 14729570
-
(2004)
Genes Dev
, vol.18
, pp. 132-137
-
-
Vella, M.C.1
Choi, E.-Y.2
Lin, S.-Y.3
Reinert, K.4
Slack, F.J.5
-
13
-
-
0033634943
-
The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor
-
Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, et al. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5: 659–669. 10882102
-
(2000)
Mol Cell
, vol.5
, pp. 659-669
-
-
Slack, F.J.1
Basson, M.2
Liu, Z.3
Ambros, V.4
Horvitz, H.R.5
-
14
-
-
36849078711
-
let-7 regulates self renewal and tumorigenicity of breast cancer cells
-
Yu F, Yao H, Zhu P, Zhang X, Pan Q, et al. (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109–1123. 18083101
-
(2007)
Cell
, vol.131
, pp. 1109-1123
-
-
Yu, F.1
Yao, H.2
Zhu, P.3
Zhang, X.4
Pan, Q.5
-
15
-
-
52949091534
-
The let-7 family of microRNAs
-
Roush S, Slack FJ, (2008) The let-7 family of microRNAs. Trends Cell Biol 18: 505–516. doi: 10.1016/j.tcb.2008.07.007 18774294
-
(2008)
Trends Cell Biol
, vol.18
, pp. 505-516
-
-
Roush, S.1
Slack, F.J.2
-
16
-
-
84915765778
-
The TRIM-NHL protein LIN-41 controls the onset of developmental plasticity in Caenorhabditis elegans
-
Tocchini C, Keusch JJ, Miller SB, Finger S, Gut H, et al. (2014) The TRIM-NHL protein LIN-41 controls the onset of developmental plasticity in Caenorhabditis elegans. PLoS Genet 10: e1004533. doi: 10.1371/journal.pgen.1004533 25167051
-
(2014)
PLoS Genet
, vol.10
, pp. 1004533
-
-
Tocchini, C.1
Keusch, J.J.2
Miller, S.B.3
Finger, S.4
Gut, H.5
-
17
-
-
84891742725
-
The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes
-
Worringer KA, Rand TA, Hayashi Y, Sami S, Takahashi K, et al. (2014) The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 14: 40–52. doi: 10.1016/j.stem.2013.11.001 24239284
-
(2014)
Cell Stem Cell
, vol.14
, pp. 40-52
-
-
Worringer, K.A.1
Rand, T.A.2
Hayashi, Y.3
Sami, S.4
Takahashi, K.5
-
18
-
-
36749043230
-
Induced pluripotent stem cell lines derived from human somatic cells
-
Yu J, Vodyanik M a, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920. 18029452
-
(2007)
Science
, vol.318
, pp. 1917-1920
-
-
Yu, J.1
Vodyanik, M.2
Smuga-Otto, K.3
Antosiewicz-Bourget, J.4
Frane, J.L.5
-
19
-
-
84870902953
-
Cellular alchemy and the golden age of reprogramming
-
Daley GQ, (2012) Cellular alchemy and the golden age of reprogramming. Cell 151: 1151–1154. doi: 10.1016/j.cell.2012.11.016 23217698
-
(2012)
Cell
, vol.151
, pp. 1151-1154
-
-
Daley, G.Q.1
-
20
-
-
84885896439
-
LIN28B promotes growth and tumorigenesis of the intestinal epithelium via Let-7
-
Madison BB, Liu Q, Zhong X, Hahn CM, Lin N, et al. (2013) LIN28B promotes growth and tumorigenesis of the intestinal epithelium via Let-7. Genes Dev 27: 2233–2245. doi: 10.1101/gad.224659.113 24142874
-
(2013)
Genes Dev
, vol.27
, pp. 2233-2245
-
-
Madison, B.B.1
Liu, Q.2
Zhong, X.3
Hahn, C.M.4
Lin, N.5
-
21
-
-
84887984423
-
Lin28 enhances tissue repair by reprogramming cellular metabolism
-
Shyh-Chang N, Zhu H, Yvanka de Soysa T, Shinoda G, Seligson MT, et al. (2013) Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155: 778–792. doi: 10.1016/j.cell.2013.09.059 24209617
-
(2013)
Cell
, vol.155
, pp. 778-792
-
-
Shyh-Chang, N.1
Zhu, H.2
Yvanka de Soysa, T.3
Shinoda, G.4
Seligson, M.T.5
-
22
-
-
67649881121
-
Lin28 promotes transformation and is associated with advanced human malignancies
-
Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, et al. (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41: 843–848. doi: 10.1038/ng.392 19483683
-
(2009)
Nat Genet
, vol.41
, pp. 843-848
-
-
Viswanathan, S.R.1
Powers, J.T.2
Einhorn, W.3
Hoshida, Y.4
Ng, T.L.5
-
23
-
-
84899740983
-
Lin28 sustains early renal progenitors and induces Wilms tumor
-
Urbach A, Yermalovich A, Zhang J, Spina CS, Zhu H, et al. (2014) Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev 28: 971–982. doi: 10.1101/gad.237149.113 24732380
-
(2014)
Genes Dev
, vol.28
, pp. 971-982
-
-
Urbach, A.1
Yermalovich, A.2
Zhang, J.3
Spina, C.S.4
Zhu, H.5
-
24
-
-
33646042547
-
Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans
-
Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, et al. (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124: 1209–1223. 16529801
-
(2006)
Cell
, vol.124
, pp. 1209-1223
-
-
Motola, D.L.1
Cummins, C.L.2
Rottiers, V.3
Sharma, K.K.4
Li, T.5
-
25
-
-
0031947155
-
daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans
-
Antebi A, Culotti JG, Hedgecock EM, (1998) daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development 125: 1191–1205. 9477318
-
(1998)
Development
, vol.125
, pp. 1191-1205
-
-
Antebi, A.1
Culotti, J.G.2
Hedgecock, E.M.3
-
26
-
-
0034659485
-
daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans
-
Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL, (2000) daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 14: 1512–1527. 10859169
-
(2000)
Genes Dev
, vol.14
, pp. 1512-1527
-
-
Antebi, A.1
Yeh, W.H.2
Tait, D.3
Hedgecock, E.M.4
Riddle, D.L.5
-
27
-
-
64249129511
-
Nuclear hormone receptor regulation of microRNAs controls developmental progression
-
Bethke A, Fielenbach N, Wang Z, Mangelsdorf DJ, Antebi A, (2009) Nuclear hormone receptor regulation of microRNAs controls developmental progression. Science 324: 95–98. doi: 10.1126/science.1164899 19342589
-
(2009)
Science
, vol.324
, pp. 95-98
-
-
Bethke, A.1
Fielenbach, N.2
Wang, Z.3
Mangelsdorf, D.J.4
Antebi, A.5
-
28
-
-
73249148097
-
A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans
-
Hammell CM, Karp X, Ambros V, (2009) A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106: 18668–18673. doi: 10.1073/pnas.0908131106 19828440
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 18668-18673
-
-
Hammell, C.M.1
Karp, X.2
Ambros, V.3
-
29
-
-
79960937846
-
DAF-12 regulates a connected network of genes to ensure robust developmental decisions
-
Hochbaum D, Zhang Y, Stuckenholz C, Labhart P, Alexiadis V, et al. (2011) DAF-12 regulates a connected network of genes to ensure robust developmental decisions. PLoS Genet 7: e1002179. doi: 10.1371/journal.pgen.1002179 21814518
-
(2011)
PLoS Genet
, vol.7
, pp. 1002179
-
-
Hochbaum, D.1
Zhang, Y.2
Stuckenholz, C.3
Labhart, P.4
Alexiadis, V.5
-
30
-
-
24144494563
-
The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans
-
Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, et al. (2005) The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9: 403–414. 16139228
-
(2005)
Dev Cell
, vol.9
, pp. 403-414
-
-
Abbott, A.L.1
Alvarez-Saavedra, E.2
Miska, E.A.3
Lau, N.C.4
Bartel, D.P.5
-
31
-
-
84863005508
-
Autoregulation of microRNA biogenesis by let-7 and Argonaute
-
Zisoulis DG, Kai ZS, Chang RK, Pasquinelli AE, (2012) Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486: 541–544. doi: 10.1038/nature11134 22722835
-
(2012)
Nature
, vol.486
, pp. 541-544
-
-
Zisoulis, D.G.1
Kai, Z.S.2
Chang, R.K.3
Pasquinelli, A.E.4
-
32
-
-
0037772254
-
The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter
-
Johnson SM, Lin SY, Slack FJ, (2003) The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol 259: 364–379. 12871707
-
(2003)
Dev Biol
, vol.259
, pp. 364-379
-
-
Johnson, S.M.1
Lin, S.Y.2
Slack, F.J.3
-
33
-
-
33845709215
-
Multiple mechanisms are involved in regulating the expression of the developmental timing regulator lin-28 in Caenorhabditis elegans
-
Morita K, Han M, (2006) Multiple mechanisms are involved in regulating the expression of the developmental timing regulator lin-28 in Caenorhabditis elegans. EMBO J 25: 5794–5804. 17139256
-
(2006)
EMBO J
, vol.25
, pp. 5794-5804
-
-
Morita, K.1
Han, M.2
-
34
-
-
84905455419
-
LIN-42, the Caenorhabditis elegans PERIOD homolog, negatively regulates microRNA transcription
-
Perales R, King DM, Aguirre-Chen C, Hammell CM, (2014) LIN-42, the Caenorhabditis elegans PERIOD homolog, negatively regulates microRNA transcription. PLoS Genet 10: e1004486. doi: 10.1371/journal.pgen.1004486 25032706
-
(2014)
PLoS Genet
, vol.10
, pp. 1004486
-
-
Perales, R.1
King, D.M.2
Aguirre-Chen, C.3
Hammell, C.M.4
-
35
-
-
80052305737
-
The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate
-
Brabin C, Appleford PJ, Woollard A, (2011) The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the Fusogen EFF-1 to maintain the seam stem-like fate. PLoS Genet 7: e1002200. doi: 10.1371/journal.pgen.1002200 21829390
-
(2011)
PLoS Genet
, vol.7
, pp. 1002200
-
-
Brabin, C.1
Appleford, P.J.2
Woollard, A.3
-
36
-
-
0035099449
-
Activation of hypodermal differentiation in the Caenorhabditis elegans embryo by GATA transcription factors ELT-1 and ELT-3
-
Gilleard JS, McGhee JD, (2001) Activation of hypodermal differentiation in the Caenorhabditis elegans embryo by GATA transcription factors ELT-1 and ELT-3. Mol Cell Biol 21: 2533–2544. 11259601
-
(2001)
Mol Cell Biol
, vol.21
, pp. 2533-2544
-
-
Gilleard, J.S.1
McGhee, J.D.2
-
37
-
-
30544440966
-
The Caenorhabditis elegans GATA factor elt-1 is essential for differentiation and maintenance of hypodermal seam cells and for normal locomotion
-
Smith J a, McGarr P, Gilleard JS, (2005) The Caenorhabditis elegans GATA factor elt-1 is essential for differentiation and maintenance of hypodermal seam cells and for normal locomotion. J Cell Sci 118: 5709–5719. 16303852
-
(2005)
J Cell Sci
, vol.118
, pp. 5709-5719
-
-
Smith, J.1
McGarr, P.2
Gilleard, J.S.3
-
38
-
-
0025916496
-
elt-1, an embryonically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family
-
Spieth J, Shim YH, Lea K, Conrad R, Blumenthal T, (1991) elt-1, an embryonically expressed Caenorhabditis elegans gene homologous to the GATA transcription factor family. Mol Cell Biol 11: 4651–4659. 1875944
-
(1991)
Mol Cell Biol
, vol.11
, pp. 4651-4659
-
-
Spieth, J.1
Shim, Y.H.2
Lea, K.3
Conrad, R.4
Blumenthal, T.5
-
39
-
-
84926320684
-
-
Wilkinson-White LE, Ripin N, Jacques DA, Guss JM, Matthews JM (2012) Both Zn Fingers of GATA1 Bound to Palindromic DNA Recognition Site, P21 Crystal Form: PDB ID: 3VD6. Available: http://www.rcsb.org/pdb/.
-
-
-
-
40
-
-
14844349979
-
ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans
-
Cassata G, Shemer G, Morandi P, Donhauser R, Podbilewicz B, et al. (2005) ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development 132: 739–749. 15659483
-
(2005)
Development
, vol.132
, pp. 739-749
-
-
Cassata, G.1
Shemer, G.2
Morandi, P.3
Donhauser, R.4
Podbilewicz, B.5
-
41
-
-
69249213862
-
The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells
-
Huang X, Tian E, Xu Y, Zhang H, (2009) The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem cell-like seam cells. Dev Biol 333: 337–347. doi: 10.1016/j.ydbio.2009.07.005 19607822
-
(2009)
Dev Biol
, vol.333
, pp. 337-347
-
-
Huang, X.1
Tian, E.2
Xu, Y.3
Zhang, H.4
-
42
-
-
13344249682
-
Developmental timing in C. elegans is regulated by kin-20 and tim-1, homologs of core circadian clock genes
-
Banerjee D, Kwok A, Lin S-Y, Slack FJ, (2005) Developmental timing in C. elegans is regulated by kin-20 and tim-1, homologs of core circadian clock genes. Dev Cell 8: 287–295. 15691769
-
(2005)
Dev Cell
, vol.8
, pp. 287-295
-
-
Banerjee, D.1
Kwok, A.2
Lin, S.-Y.3
Slack, F.J.4
-
43
-
-
33847221398
-
DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age
-
Fielenbach N, Guardavaccaro D, Neubert K, Chan T, Li D, et al. (2007) DRE-1: an evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev Cell 12: 443–455. 17336909
-
(2007)
Dev Cell
, vol.12
, pp. 443-455
-
-
Fielenbach, N.1
Guardavaccaro, D.2
Neubert, K.3
Chan, T.4
Li, D.5
-
44
-
-
9144224451
-
Processing of primary microRNAs by the Microprocessor complex
-
Denli AM, Tops BBJ, Plasterk RH a, Ketting RF, Hannon GJ, (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231–235. 15531879
-
(2004)
Nature
, vol.432
, pp. 231-235
-
-
Denli, A.M.1
Tops, B.B.J.2
Plasterk, R.H.3
Ketting, R.F.4
Hannon, G.J.5
-
45
-
-
84907420733
-
Regulatory analysis of the C. elegans genome with spatiotemporal resolution
-
Araya CL, Kawli T, Kundaje A, Jiang L, Wu B, et al. (2014) Regulatory analysis of the C. elegans genome with spatiotemporal resolution. Nature 512: 400–405. doi: 10.1038/nature13497 25164749
-
(2014)
Nature
, vol.512
, pp. 400-405
-
-
Araya, C.L.1
Kawli, T.2
Kundaje, A.3
Jiang, L.4
Wu, B.5
-
46
-
-
0030805657
-
ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos
-
Page BD, Zhang W, Steward K, Blumenthal T, Priess JR, (1997) ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos. Genes Dev 11: 1651–1661. 9224715
-
(1997)
Genes Dev
, vol.11
, pp. 1651-1661
-
-
Page, B.D.1
Zhang, W.2
Steward, K.3
Blumenthal, T.4
Priess, J.R.5
-
47
-
-
0016063911
-
The Genetics of Caenorhabditis elegans
-
Brenner S, (1974) The Genetics of Caenorhabditis elegans. Genetics 77: 71–94. 4366476
-
(1974)
Genetics
, vol.77
, pp. 71-94
-
-
Brenner, S.1
-
48
-
-
0035229245
-
Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans
-
Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J, (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2.
-
(2001)
Genome Biol
, vol.2
-
-
Kamath, R.S.1
Martinez-Campos, M.2
Zipperlen, P.3
Fraser, A.G.4
Ahringer, J.5
-
49
-
-
23944514849
-
Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation
-
Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, et al. (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122: 553–563. 16122423
-
(2005)
Cell
, vol.122
, pp. 553-563
-
-
Bagga, S.1
Bracht, J.2
Hunter, S.3
Massirer, K.4
Holtz, J.5
-
50
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
-
Livak KJ, Schmittgen TD, (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. 11846609
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
51
-
-
44049116682
-
Histochemical techniques for locating Escherichia coli beta-galactosidase activity in transgenic organisms
-
Fire A, (1992) Histochemical techniques for locating Escherichia coli beta-galactosidase activity in transgenic organisms. Genet Anal Tech Appl 9: 151–158. 1296710
-
(1992)
Genet Anal Tech Appl
, vol.9
, pp. 151-158
-
-
Fire, A.1
-
52
-
-
84862188358
-
modMine: flexible access to modENCODE data
-
Contrino S, Smith RN, Butano D, Carr A, Hu F, et al. (2012) modMine: flexible access to modENCODE data. Nucleic Acids Res 40: D1082–D1088. doi: 10.1093/nar/gkr921 22080565
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 1082-1088
-
-
Contrino, S.1
Smith, R.N.2
Butano, D.3
Carr, A.4
Hu, F.5
-
53
-
-
78650410139
-
Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project
-
Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, et al. (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330: 1775–1787. doi: 10.1126/science.1196914 21177976
-
(2010)
Science
, vol.330
, pp. 1775-1787
-
-
Gerstein, M.B.1
Lu, Z.J.2
Van Nostrand, E.L.3
Cheng, C.4
Arshinoff, B.I.5
-
54
-
-
42049088684
-
Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans
-
Mukhopadhyay A, Deplancke B, Walhout AJM, Tissenbaum HA, (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc 3: 698–709. doi: 10.1038/nprot.2008.38 18388953
-
(2008)
Nat Protoc
, vol.3
, pp. 698-709
-
-
Mukhopadhyay, A.1
Deplancke, B.2
Walhout, A.J.M.3
Tissenbaum, H.A.4
|