메뉴 건너뛰기




Volumn 7, Issue 2, 2015, Pages 186-197

Propagating and Aggregating Fuzzy Polarities for Concept-Level Sentiment Analysis

Author keywords

Fuzzy logic; Multi domain learning; Sentiment analysis

Indexed keywords

DATA MINING; UNCERTAINTY ANALYSIS;

EID: 84926322258     PISSN: 18669956     EISSN: 18669964     Source Type: Journal    
DOI: 10.1007/s12559-014-9308-6     Document Type: Article
Times cited : (69)

References (61)
  • 2
    • 84866007229 scopus 로고    scopus 로고
    • A survey of opinion mining and sentiment analysis
    • Aggarwal CC, Zhai CX, (eds), Springer, Berlin:
    • Liu B, Zhang L. A survey of opinion mining and sentiment analysis. In: Aggarwal CC, Zhai CX, editors. Mining text data. Berlin: Springer; 2012. p. 415–63.
    • (2012) Mining text data , pp. 415-463
    • Liu, B.1    Zhang, L.2
  • 3
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification
    • Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL; 2007. p. 187–205.
    • In: ACL , vol.2007 , pp. 187-205
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 4
    • 48449095896 scopus 로고    scopus 로고
    • Opinion mining and sentiment analysis
    • Pang B, Lee L. Opinion mining and sentiment analysis. Found Trends Inf Retr. 2008;2(1–2):1–135.
    • (2008) Found Trends Inf Retr , vol.2 , Issue.1-2 , pp. 1-135
    • Pang, B.1    Lee, L.2
  • 5
    • 85141280473 scopus 로고    scopus 로고
    • A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts
    • Pang B, Lee L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL; 2004. p. 271–78.
    • In: ACL , vol.2004 , pp. 271-278
    • Pang, B.1    Lee, L.2
  • 6
    • 9444244198 scopus 로고    scopus 로고
    • Mining the peanut gallery: opinion extraction and semantic classification of product reviews
    • Dave K, Lawrence S, Pennock DM. Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: WWW; 2003. p. 519–28.
    • In: WWW , vol.2003 , pp. 519-528
    • Dave, K.1    Lawrence, S.2    Pennock, D.M.3
  • 7
    • 79958278126 scopus 로고    scopus 로고
    • A study of information retrieval weighting schemes for sentiment analysis
    • Paltoglou G, Thelwall M. A study of information retrieval weighting schemes for sentiment analysis. In: ACL; 2010. p. 1386–95.
    • In: ACL , vol.2010 , pp. 1386-1395
    • Paltoglou, G.1    Thelwall, M.2
  • 8
    • 57349091686 scopus 로고    scopus 로고
    • Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples
    • Tan S, Wang Y, Cheng X. Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples. In: SIGIR; 2008. p. 743–44.
    • In: SIGIR , vol.2008 , pp. 743-744
    • Tan, S.1    Wang, Y.2    Cheng, X.3
  • 9
    • 74549201048 scopus 로고    scopus 로고
    • Selc: a self-supervised model for sentiment classification
    • Qiu L, Zhang W, Hu C, Zhao K. Selc: a self-supervised model for sentiment classification. In: CIKM; 2009. p. 929–36.
    • In: CIKM , vol.2009 , pp. 929-936
    • Qiu, L.1    Zhang, W.2    Hu, C.3    Zhao, K.4
  • 10
    • 70350645448 scopus 로고    scopus 로고
    • Sentiment analysis of blogs by combining lexical knowledge with text classification
    • Melville P, Gryc W, Lawrence RD. Sentiment analysis of blogs by combining lexical knowledge with text classification. In: KDD; 2009. p. 1275–284.
    • In: KDD , vol.2009 , pp. 1275-1284
    • Melville, P.1    Gryc, W.2    Lawrence, R.D.3
  • 12
    • 85136072040 scopus 로고    scopus 로고
    • Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews
    • Turney PD. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL; 2002. p. 417–24.
    • In: ACL , vol.2002 , pp. 417-424
    • Turney, P.D.1
  • 15
    • 79551514793 scopus 로고    scopus 로고
    • Topic-driven multi-document summarization
    • Wang H, Zhou G. Topic-driven multi-document summarization. In: IALP; 2010. p. 195–98.
    • In: IALP , vol.2010 , pp. 195-198
    • Wang, H.1    Zhou, G.2
  • 16
    • 80053345589 scopus 로고    scopus 로고
    • Feature subsumption for opinion analysis
    • Riloff E, Patwardhan S, Wiebe J. Feature subsumption for opinion analysis. In: EMNLP; 2006. p. 440–48.
    • In: EMNLP , vol.2006 , pp. 440-448
    • Riloff, E.1    Patwardhan, S.2    Wiebe, J.3
  • 18
    • 9444224970 scopus 로고    scopus 로고
    • Just how mad are you? Finding strong and weak opinion clauses
    • Wilson T, Wiebe J, Hwa R. Just how mad are you? Finding strong and weak opinion clauses. In: AAAI; 2004. p. 761–69.
    • In: AAAI , vol.2004 , pp. 761-769
    • Wilson, T.1    Wiebe, J.2    Hwa, R.3
  • 19
    • 33646867863 scopus 로고    scopus 로고
    • Recognizing strong and weak opinion clauses
    • Wilson T, Wiebe J, Hwa R. Recognizing strong and weak opinion clauses. Comput Intell. 2006;22(2):73–99.
    • (2006) Comput Intell , vol.22 , Issue.2 , pp. 73-99
    • Wilson, T.1    Wiebe, J.2    Hwa, R.3
  • 20
    • 85125365322 scopus 로고    scopus 로고
    • Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences
    • Stroudsburg, PA: Association for Computational Linguistics
    • Yu H, Hatzivassiloglou V. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the 2003 conference on empirical methods in natural language processing. EMNLP ’03. Stroudsburg, PA: Association for Computational Linguistics; 2003. p. 129–36.
    • (2003) Proceedings of the 2003 conference on empirical methods in natural language processing. EMNLP ’03 , pp. 129-136
    • Yu, H.1    Hatzivassiloglou, V.2
  • 21
    • 2442549033 scopus 로고    scopus 로고
    • Effects of adjective orientation and gradability on sentence subjectivity
    • Hatzivassiloglou V, Wiebe J. Effects of adjective orientation and gradability on sentence subjectivity. In: COLING; 2000. p. 299–305.
    • In: COLING , vol.2000 , pp. 299-305
    • Hatzivassiloglou, V.1    Wiebe, J.2
  • 22
    • 80053354603 scopus 로고    scopus 로고
    • Analyzing predictive opinions on the web
    • Kim SM, Hovy EH. Crystal: Analyzing predictive opinions on the web. In: EMNLP-CoNLL; 2007. p. 1056–64.
    • In: EMNLP-CoNLL , vol.2007 , pp. 1056-1064
    • Kim, S.M.1    Crystal, H.E.H.2
  • 24
    • 79960588185 scopus 로고    scopus 로고
    • Extracting opinion targets in a single and cross-domain setting with conditional random fields
    • Jakob N, Gurevych I. Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: EMNLP; 2010. p. 1035–45.
    • In: EMNLP , vol.2010 , pp. 1035-1045
    • Jakob, N.1    Gurevych, I.2
  • 25
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: probabilistic models for segmenting and labeling sequence data
    • Lafferty JD, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML; 2001. p. 282–89.
    • In: ICML , vol.2001 , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 26
    • 84943738891 scopus 로고    scopus 로고
    • Information extraction with HMM structures learned by stochastic optimization
    • Freitag D, McCallum A. Information extraction with HMM structures learned by stochastic optimization. In: AAAI/IAAI; 2000. p. 584–89.
    • In: AAAI/IAAI , vol.2000 , pp. 584-589
    • Freitag, D.1    McCallum, A.2
  • 28
    • 70350657117 scopus 로고    scopus 로고
    • Opinionminer: a novel machine learning system for web opinion mining and extraction
    • Jin W, Ho HH, Srihari RK. Opinionminer: a novel machine learning system for web opinion mining and extraction. In: KDD; 2009. p. 1195–1204.
    • In: KDD , vol.2009 , pp. 1195-1204
    • Jin, W.1    Ho, H.H.2    Srihari, R.K.3
  • 29
    • 33746036191 scopus 로고    scopus 로고
    • Opinion observer: analyzing and comparing opinions on the web
    • Liu B, Hu M, Cheng J. Opinion observer: analyzing and comparing opinions on the web. In: WWW; 2005. p. 342–51.
    • In: WWW , vol.2005 , pp. 342-351
    • Liu, B.1    Hu, M.2    Cheng, J.3
  • 30
    • 80053411996 scopus 로고    scopus 로고
    • Phrase dependency parsing for opinion mining
    • Wu Y, Zhang Q, Huang X, Wu L. Phrase dependency parsing for opinion mining. In: EMNLP; 2009. p. 1533–41.
    • In: EMNLP , vol.2009 , pp. 1533-1541
    • Wu, Y.1    Zhang, Q.2    Huang, X.3    Wu, L.4
  • 31
    • 57349197037 scopus 로고    scopus 로고
    • Hidden sentiment association in chinese web opinion mining
    • Su Q, Xu X, Guo H, Guo Z, Wu X, Zhang X, Swen B, Su Z. Hidden sentiment association in chinese web opinion mining. In: WWW; 2008. p. 959–68.
    • In: WWW , vol.2008 , pp. 959-968
    • Su, Q.1    Xu, X.2    Guo, H.3    Guo, Z.4    Wu, X.5    Zhang, X.6    Swen, B.7    Su, Z.8
  • 32
    • 78751699461 scopus 로고    scopus 로고
    • Expanding domain sentiment lexicon through double propagation
    • Qiu G, Liu B, Bu J, Chen C. Expanding domain sentiment lexicon through double propagation. In: IJCAI; 2009. p. 1199–1204.
    • In: IJCAI , vol.2009 , pp. 1199-1204
    • Qiu, G.1    Liu, B.2    Bu, J.3    Chen, C.4
  • 33
    • 79952798987 scopus 로고    scopus 로고
    • Opinion word expansion and target extraction through double propagation
    • Qiu G, Liu B, Bu J, Chen C. Opinion word expansion and target extraction through double propagation. Comput Linguist. 2011;37(1):9–27.
    • (2011) Comput Linguist , vol.37 , Issue.1 , pp. 9-27
    • Qiu, G.1    Liu, B.2    Bu, J.3    Chen, C.4
  • 34
    • 80053418268 scopus 로고    scopus 로고
    • Robust sentiment detection on twitter from biased and noisy data
    • Barbosa L, Feng J. Robust sentiment detection on twitter from biased and noisy data. In: COLING (Posters); 2010. p. 36–44.
    • In: COLING (Posters) , vol.2010 , pp. 36-44
    • Barbosa, L.1    Feng, J.2
  • 35
    • 78651286606 scopus 로고    scopus 로고
    • Classifying sentiment in microblogs: is brevity an advantage?
    • Bermingham A, Smeaton AF. Classifying sentiment in microblogs: is brevity an advantage? In: CIKM; 2010. p. 1833–36.
    • In: CIKM , vol.2010 , pp. 1833-1836
    • Bermingham, A.1    Smeaton, A.F.2
  • 36
    • 79953762206 scopus 로고    scopus 로고
    • Twitter sentiment classification using distant supervision. CS224N Project Report
    • Go A, Bhayani R, Huang L. Twitter sentiment classification using distant supervision. CS224N Project Report, Standford University; 2009.
    • (2009) Standford University
    • Go, A.1    Bhayani, R.2    Huang, L.3
  • 38
    • 84870441970 scopus 로고    scopus 로고
    • Sentic album: content-, concept-, and context-based online personal photo management system
    • Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cognit Comput. 2012;4(4):477–96.
    • (2012) Cognit Comput , vol.4 , Issue.4 , pp. 477-496
    • Cambria, E.1    Hussain, A.2
  • 39
    • 84877086482 scopus 로고    scopus 로고
    • Common sense knowledge for handwritten chinese recognition
    • Wang QF, Cambria E, Liu CL, Hussain A. Common sense knowledge for handwritten chinese recognition. Cognit Comput. 2013;5(2):234–42.
    • (2013) Cognit Comput , vol.5 , Issue.2 , pp. 234-242
    • Wang, Q.F.1    Cambria, E.2    Liu, C.L.3    Hussain, A.4
  • 40
    • 44049095352 scopus 로고    scopus 로고
    • Customizing sentiment classifiers to new domains: a case study
    • Aue A, Gamon M. Customizing sentiment classifiers to new domains: a case study. In: Proceedings of RANLP; 2005.
    • (2005) Proceedings of RANLP
    • Aue, A.1    Gamon, M.2
  • 41
    • 48449083709 scopus 로고    scopus 로고
    • Knowledge transfer and opinion detection in the TREC 2006 blog track
    • Yang H, Callan J, Si L. Knowledge transfer and opinion detection in the TREC 2006 blog track. In: TREC; 2006.
    • (2006) TREC
    • Yang, H.1    Callan, J.2    Si, L.3
  • 42
    • 77954584149 scopus 로고    scopus 로고
    • Cross-domain sentiment classification via spectral feature alignment
    • Pan SJ, Ni X, Sun JT, Yang Q, Chen Z. Cross-domain sentiment classification via spectral feature alignment. In: WWW; 2010. p. 751–60.
    • In: WWW , vol.2010 , pp. 751-760
    • Pan, S.J.1    Ni, X.2    Sun, J.T.3    Yang, Q.4    Chen, Z.5
  • 43
    • 84897584660 scopus 로고    scopus 로고
    • Cross-domain sentiment classification using a sentiment sensitive thesaurus
    • Bollegala D, Weir DJ, Carroll JA. Cross-domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans Knowl Data Eng. 2013;25(8):1719–31.
    • (2013) IEEE Trans Knowl Data Eng , vol.25 , Issue.8 , pp. 1719-1731
    • Bollegala, D.1    Weir, D.J.2    Carroll, J.A.3
  • 44
    • 84884134119 scopus 로고    scopus 로고
    • Feature ensemble plus sample selection: domain adaptation for sentiment classification
    • COI: 1:CAS:528:DC%2BC3sXhslyqsL3E
    • Xia R, Zong C, Hu X, Cambria E. Feature ensemble plus sample selection: domain adaptation for sentiment classification. IEEE Int Syst. 2013;28(3):10–8.
    • (2013) IEEE Int Syst , vol.28 , Issue.3 , pp. 10-18
    • Xia, R.1    Zong, C.2    Hu, X.3    Cambria, E.4
  • 45
    • 80055049538 scopus 로고    scopus 로고
    • Transfer learning for multiple-domain sentiment analysis—identifying domain dependent/independent word polarity
    • Yoshida Y, Hirao T, Iwata T, Nagata M, Matsumoto Y. Transfer learning for multiple-domain sentiment analysis—identifying domain dependent/independent word polarity. In: AAAI; 2011. p. 1286–91.
    • In: AAAI , vol.2011 , pp. 1286-1291
    • Yoshida, Y.1    Hirao, T.2    Iwata, T.3    Nagata, M.4    Matsumoto, Y.5
  • 46
    • 84890497156 scopus 로고    scopus 로고
    • Semi-supervised vs. cross-domain graphs for sentiment analysis
    • Ponomareva N, Thelwall M. Semi-supervised vs. cross-domain graphs for sentiment analysis. In: RANLP; 2013. p. 571–78.
    • In: RANLP , vol.2013 , pp. 571-578
    • Ponomareva, N.1    Thelwall, M.2
  • 47
    • 84880175617 scopus 로고    scopus 로고
    • Building a concept-level sentiment dictionary based on commonsense knowledge
    • Tsai ACR, Wu CE, Tsai RTH, Jen Hsu JY. Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Int Syst. 2013;28(2):22–30.
    • (2013) IEEE Int Syst , vol.28 , Issue.2 , pp. 22-30
    • Tsai, A.C.R.1    Wu, C.E.2    Tsai, R.T.H.3    Jen Hsu, J.Y.4
  • 49
    • 84892445065 scopus 로고    scopus 로고
    • Automatic construction of domain-specific sentiment lexicon based on constrained label propagation
    • Huang S, Niu Z, Shi C. Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl Based Syst. 2014;56:191–200.
    • (2014) Knowl Based Syst , vol.56 , pp. 191-200
    • Huang, S.1    Niu, Z.2    Shi, C.3
  • 50
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA. Fuzzy sets. Inf Control. 1965;8:338–53.
    • (1965) Inf Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 51
    • 49349133217 scopus 로고
    • Fuzzy sets as a basis for a theory of possibility
    • Zadeh LA. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978;1:3–28.
    • (1978) Fuzzy Sets Syst , vol.1 , pp. 3-28
    • Zadeh, L.A.1
  • 52
    • 0016458950 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning—I
    • Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci. 1975;8(3):199–249.
    • (1975) Inf Sci , vol.8 , Issue.3 , pp. 199-249
    • Zadeh, L.A.1
  • 53
    • 84974753804 scopus 로고
    • Defuzzification in fuzzy controllers
    • Hellendoorn H, Thomas C. Defuzzification in fuzzy controllers. Intell Fuzzy Syst. 1993;1:109–23.
    • (1993) Intell Fuzzy Syst , vol.1 , pp. 109-123
    • Hellendoorn, H.1    Thomas, C.2
  • 55
    • 84908152207 scopus 로고    scopus 로고
    • Senticnet 3: a common and common-sense knowledge base for cognition–driven sentiment analysis
    • Cambria E, Olsher D, Rajagopal D. Senticnet 3: a common and common-sense knowledge base for cognition–driven sentiment analysis. In: AAAI; 2014. p. 1515–21.
    • In: AAAI , vol.2014 , pp. 1515-1521
    • Cambria, E.1    Olsher, D.2    Rajagopal, D.3
  • 56
    • 85034054192 scopus 로고    scopus 로고
    • Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining
    • Baccianella S, Esuli A, Sebastiani F. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC; 2010. p. 2200–04.
    • In: LREC , vol.2010 , pp. 2200-2204
    • Baccianella, S.1    Esuli, A.2    Sebastiani, F.3
  • 57
    • 77952046238 scopus 로고    scopus 로고
    • Developing heo human emotions ontology
    • Grassi M. Developing heo human emotions ontology. In: COST 2101/2102 conference; 2009. p. 244–51.
    • In: COST 2101/2102 conference , vol.2009 , pp. 244-251
    • Grassi, M.1
  • 58
    • 0022189338 scopus 로고
    • Fuzzy computations in risk and decision analysis
    • Dong W, Shah H, Wong F. Fuzzy computations in risk and decision analysis. Civ Eng Syst. 1985;2:201–8.
    • (1985) Civ Eng Syst , vol.2 , pp. 201-208
    • Dong, W.1    Shah, H.2    Wong, F.3
  • 59
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • COI: 1:STN:280:DC%2BC3cvktFWjtw%3D%3D, PID: 17813860
    • Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671–80.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 60
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: a library for support vector machines
    • Chang CC, Lin CJ. Libsvm: a library for support vector machines. ACM TIST. 2011;2(3):27:1–27.
    • (2011) ACM TIST , vol.2 , Issue.3 , pp. 27:1-27:27
    • Chang, C.C.1    Lin, C.J.2
  • 61
    • 84926338659 scopus 로고    scopus 로고
    • McCallum AK. Mallet: a machine learning for language toolkit. (2002).
    • McCallum AK. Mallet: a machine learning for language toolkit. http://mallet.cs.umass.edu (2002).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.