메뉴 건너뛰기




Volumn 30, Issue 6, 2011, Pages 642-653

An evaluation of resampling methods for assessment of survival risk prediction in high-dimensional settings

Author keywords

Microarray data analysis; Prediction accuracy; Prognostic signatures; Resampling methods; Survival analysis

Indexed keywords

ACCURACY; ARTICLE; BOOTSTRAPPING; CANCER SURVIVAL; CONTROLLED STUDY; GENOMICS; INTERMETHOD COMPARISON; LARGE CELL LYMPHOMA; LUNG CANCER; MICROARRAY ANALYSIS; PREDICTION; PROGNOSIS; RESAMPLING; SAMPLING; SAMPLING ERROR; SIGNAL NOISE RATIO; SURVIVAL; SURVIVAL RISK PREDICTION; VALIDATION PROCESS;

EID: 79951755788     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.4106     Document Type: Article
Times cited : (29)

References (36)
  • 6
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: implications for exploring gene and protein expression data
    • Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nature Reviews Cancer 2008; 8:37-49.
    • (2008) Nature Reviews Cancer , vol.8 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3    Xuan, J.4    Liu, M.C.5    Gehan, E.A.6    Wang, Y.7
  • 10
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine 1997; 16:385-395.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 11
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 2005; 21:3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 12
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: a comparison of resampling methods
    • Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics 2005; 21:3301-3307.
    • (2005) Bioinformatics , vol.21 , pp. 3301-3307
    • Molinaro, A.M.1    Simon, R.2    Pfeiffer, R.M.3
  • 16
    • 0003435337 scopus 로고    scopus 로고
    • Applied Survival Analysis
    • Wiley: New York,.
    • Hosmer Jr DW, Lemeshow S. Applied Survival Analysis. Wiley: New York, 1999; 93-105.
    • (1999) , pp. 93-105
    • Hosmer Jr, D.W.1    Lemeshow, S.2
  • 17
    • 2342571696 scopus 로고    scopus 로고
    • Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker
    • Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. American Journal of Epidemiology 2004; 159:882-890.
    • (2004) American Journal of Epidemiology , vol.159 , pp. 882-890
    • Pepe, M.S.1    Janes, H.2    Longton, G.3    Leisenring, W.4    Newcomb, P.5
  • 18
    • 33847116111 scopus 로고    scopus 로고
    • Appropriateness of some resampling-based inference procedures for assessing performance of prognostic classifiers derived from microarray data
    • Lusa L, McShane LM, Radmacher MD, Shih JH, Wright GW, Simon R. Appropriateness of some resampling-based inference procedures for assessing performance of prognostic classifiers derived from microarray data. Statistics in Medicine 2007; 26:1102-1113.
    • (2007) Statistics in Medicine , vol.26 , pp. 1102-1113
    • Lusa, L.1    McShane, L.M.2    Radmacher, M.D.3    Shih, J.H.4    Wright, G.W.5    Simon, R.6
  • 19
    • 0033936550 scopus 로고    scopus 로고
    • Time-dependent ROC curves for censored survival data and a diagnostic marker
    • Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 2000; 56:337-344.
    • (2000) Biometrics , vol.56 , pp. 337-344
    • Heagerty, P.J.1    Lumley, T.2    Pepe, M.S.3
  • 20
    • 21844511145 scopus 로고
    • Nearest neighbor estimation of a bivariate distribution under random censoring
    • Akritas MG. Nearest neighbor estimation of a bivariate distribution under random censoring. The Annals of Statistics 1994; 22:1299-1327.
    • (1994) The Annals of Statistics , vol.22 , pp. 1299-1327
    • Akritas, M.G.1
  • 21
    • 33645581993 scopus 로고    scopus 로고
    • Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited
    • Segal MR. Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell lymphoma revisited. Biostatistics 2006; 7:268-285.
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.R.1
  • 23
    • 38349089209 scopus 로고    scopus 로고
    • Stratification bias in low signal microarray studies
    • Parker BJ, Günter S, Bedo J. Stratification bias in low signal microarray studies. BMC Bioinformatics 2007; 8:326-341.
    • (2007) BMC Bioinformatics , vol.8 , pp. 326-341
    • Parker, B.J.1    Günter, S.2    Bedo, J.3
  • 26
    • 49649117439 scopus 로고    scopus 로고
    • BRB Arraytools data archive for human cancer gene expression: a unique and efficient data sharing resource
    • Zhao Y, Simon R. BRB Arraytools data archive for human cancer gene expression: a unique and efficient data sharing resource. Cancer Informatics 2008; 6:9-15.
    • (2008) Cancer Informatics , vol.6 , pp. 9-15
    • Zhao, Y.1    Simon, R.2
  • 27
    • 79951746160 scopus 로고    scopus 로고
    • survivalROC: Time-dependent ROC curve estimation from censored survival data. R package v. 1.0.0.
    • Heagerty PJ, Saha P. survivalROC: Time-dependent ROC curve estimation from censored survival data. R package v. 1.0.0, 2006.
    • (2006)
    • Heagerty, P.J.1    Saha, P.2
  • 28
    • 79951736376 scopus 로고    scopus 로고
    • survival; Survival analysis, including penalised likelihood. R package v. 2.34-1.
    • Therneau T, Lumley T. survival; Survival analysis, including penalised likelihood. R package v. 2.34-1, 2008.
    • (2008)
    • Therneau, T.1    Lumley, T.2
  • 29
    • 77952568988 scopus 로고    scopus 로고
    • L(1) penalized estimation in the Cox proportional hazards model
    • Goeman JJ. L(1) penalized estimation in the Cox proportional hazards model. Biometrical Journal 2010; 52:70-84.
    • (2010) Biometrical Journal , vol.52 , pp. 70-84
    • Goeman, J.J.1
  • 30
    • 79951735144 scopus 로고    scopus 로고
    • R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing.
    • R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2008.
    • (2008)
  • 31
    • 79951755331 scopus 로고    scopus 로고
    • snow: simple network of workstations. R package v. 0.3-3.
    • Tierney L, Rossini AJ, Sevcikova H. snow: simple network of workstations. R package v. 0.3-3, 2004.
    • (2004)
    • Tierney, L.1    Rossini, A.J.2    Sevcikova, H.3
  • 32
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small-sample microarray classification
    • Braga-Neto UM, Dougherty ER. Is cross-validation valid for small-sample microarray classification. Bioinformatics 2004; 20:374-380.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 33
    • 34247224322 scopus 로고    scopus 로고
    • Quantification of the impact of feature selection on the variance of cross-validation error estimation
    • Xiao Y, Hua J, Dougherty ER. Quantification of the impact of feature selection on the variance of cross-validation error estimation. EURASIP Journal on Bioinformatics and Systems Biology 2007; 16354-16364.
    • (2007) EURASIP Journal on Bioinformatics and Systems Biology , pp. 16354-16364
    • Xiao, Y.1    Hua, J.2    Dougherty, E.R.3
  • 34
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • Dupuy A, Simon RM. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute 2007; 99:147-157.
    • (2007) Journal of the National Cancer Institute , vol.99 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 36
    • 41649121369 scopus 로고    scopus 로고
    • Calculating confidence intervals for prediction error in microarray classification using resampling
    • Article No. 8.
    • Jiang W, Varma S, Simon R. Calculating confidence intervals for prediction error in microarray classification using resampling. Statistical Applications in Genetics and Molecular Biology 2008; 7:Article No. 8.
    • (2008) Statistical Applications in Genetics and Molecular Biology , vol.7
    • Jiang, W.1    Varma, S.2    Simon, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.