메뉴 건너뛰기




Volumn 36, Issue 6, 2015, Pages 1604-1617

Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data

Author keywords

[No Author keywords available]

Indexed keywords

CROPS; DATA ACQUISITION; NEURAL NETWORKS; QUALITY CONTROL; SUPPORT VECTOR MACHINES;

EID: 84926213411     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/2150704X.2015.1019015     Document Type: Article
Times cited : (130)

References (29)
  • 1
    • 84887290816 scopus 로고    scopus 로고
    • Parcel Level Identification of Crop Types Using Different Classification Algorithms and Multi-Resolution Imagery in South Eastern Turkey
    • Alganci, U., E. Sertel, M. Ozdogan, and C. Ormeci. 2013. “Parcel Level Identification of Crop Types Using Different Classification Algorithms and Multi-Resolution Imagery in South Eastern Turkey.” Photogrammetric Engineering and Remote Sensing 79: 1053–1065. doi:10.14358/PERS.79.11.1053.
    • (2013) Photogrammetric Engineering and Remote Sensing , vol.79 , pp. 1053-1065
    • Alganci, U.1    Sertel, E.2    Ozdogan, M.3    Ormeci, C.4
  • 3
    • 84874775534 scopus 로고    scopus 로고
    • Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets
    • Atzberger, C., and F. Rembold. 2013. “Mapping the Spatial Distribution of Winter Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets.” Remote Sensing 5: 1335–1354. doi:10.3390/rs5031335.
    • (2013) Remote Sensing , vol.5 , pp. 1335-1354
    • Atzberger, C.1    Rembold, F.2
  • 4
    • 0007934045 scopus 로고    scopus 로고
    • Comparative Performance of Per-Pixel Classifiers Using ERS-1 SAR Data for Classification of Rice Crop
    • Chakraborty, M., and S. Panigrahy. 1997. “Comparative Performance of Per-Pixel Classifiers Using ERS-1 SAR Data for Classification of Rice Crop.” Journal of the Indian Society of Remote Sensing 25: 155–161. doi:10.1007/BF03024216.
    • (1997) Journal of the Indian Society of Remote Sensing , vol.25 , pp. 155-161
    • Chakraborty, M.1    Panigrahy, S.2
  • 5
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral Discrimination of Tropical Rain Forest Tree Species at Leaf to Crown Scales
    • Clark, M. L., D. A. Roberts, and D. B. Clark. 2005. “Hyperspectral Discrimination of Tropical Rain Forest Tree Species at Leaf to Crown Scales.” Remote Sensing of Environment 96: 375–398. doi:10.1016/j.rse.2005.03.009.
    • (2005) Remote Sensing of Environment , vol.96 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 6
    • 84973587732 scopus 로고
    • A Coefficient of Agreement for Nominal Scales
    • Cohen, J. 1960. “A Coefficient of Agreement for Nominal Scales.” Educational and Psychological Measurement 20: 37–46. doi:10.1177/001316446002000104.
    • (1960) Educational and Psychological Measurement , vol.20 , pp. 37-46
    • Cohen, J.1
  • 8
    • 3042661357 scopus 로고    scopus 로고
    • Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy
    • Foody, G. M. 2004. “Thematic Map Comparison: Evaluating the Statistical Significance of Differences in Classification Accuracy.” Photogrammetric Engineering and Remote Sensing 70: 627–633. doi:10.14358/PERS.70.5.627.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 9
    • 0031105722 scopus 로고    scopus 로고
    • An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network
    • Foody, G. M., and M. K. Arora. 1997. “An Evaluation of Some Factors Affecting the Accuracy of Classification by an Artificial Neural Network.” International Journal of Remote Sensing 18: 799–810. doi:10.1080/014311697218764.
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 10
    • 3042654673 scopus 로고    scopus 로고
    • A Relative Evaluation of Multiclass Image Classification by Support Vector Machines
    • Foody, G. M., and A. Mathur. 2004. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42: 1335–1343. doi:10.1109/TGRS.2004.827257.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 12
    • 0037138473 scopus 로고    scopus 로고
    • An Assessment of Support Vector Machines for Land Cover Classification
    • Huang, C., L. S. Davis, and J. R. G. Townshend. 2002. “An Assessment of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 23: 725–749. doi:10.1080/01431160110040323.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 13
    • 0033454031 scopus 로고    scopus 로고
    • Pruning Artificial Neural Networks: An Example Using Land Cover Classification of Multi-Sensor Images
    • Kavzoglu, T., and P. M. Mather. 1999. “Pruning Artificial Neural Networks: An Example Using Land Cover Classification of Multi-Sensor Images.” International Journal of Remote Sensing 20: 2787–2803. doi:10.1080/014311699211796.
    • (1999) International Journal of Remote Sensing , vol.20 , pp. 2787-2803
    • Kavzoglu, T.1    Mather, P.M.2
  • 14
    • 0346245214 scopus 로고    scopus 로고
    • The Use of Back Propagating Artificial Neural Networks in Land Cover Classification
    • Kavzoglu, T., and P. M. Mather. 2003. “The Use of Back Propagating Artificial Neural Networks in Land Cover Classification.” International Journal of Remote Sensing 24: 4907–4938. doi:10.1080/0143116031000114851.
    • (2003) International Journal of Remote Sensing , vol.24 , pp. 4907-4938
    • Kavzoglu, T.1    Mather, P.M.2
  • 16
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • Lu, D., and Q. Weng. 2007. “A Survey of Image Classification Methods and Techniques for Improving Classification Performance.” International Journal of Remote Sensing 28: 823–870. doi:10.1080/01431160600746456.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 17
    • 37549009133 scopus 로고    scopus 로고
    • The Application of Artificial Neural Networks to the Analysis of Remotely Sensed Data
    • Mas, J. F., and J. J. Flores. 2008. “The Application of Artificial Neural Networks to the Analysis of Remotely Sensed Data.” International Journal of Remote Sensing 29: 617–663. doi:10.1080/01431160701352154.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 18
    • 70349544152 scopus 로고    scopus 로고
    • Crop Classification Using Biologically Inspired Techniques with High Resolution Satellite Image
    • Omkar, S. N., J. Senthilnath, D. Mudigere, and M. M. Kumar. 2008. “Crop Classification Using Biologically Inspired Techniques with High Resolution Satellite Image.” Journal of the Indian Society of Remote Sensing 36: 175–182. doi:10.1007/s12524-008-0018-y.
    • (2008) Journal of the Indian Society of Remote Sensing , vol.36 , pp. 175-182
    • Omkar, S.N.1    Senthilnath, J.2    Mudigere, D.3    Kumar, M.M.4
  • 19
    • 77951295936 scopus 로고    scopus 로고
    • Feature Selection for Classification of Hyperspectral Data by SVM
    • Pal, M., and G. M. Foody. 2010. “Feature Selection for Classification of Hyperspectral Data by SVM.” IEEE Transactions on Geoscience and Remote Sensing 48: 2297–2307. doi:10.1109/TGRS.2009.2039484.
    • (2010) IEEE Transactions on Geoscience and Remote Sensing , vol.48
    • Pal, M.1    Foody, G.M.2
  • 20
    • 84880397408 scopus 로고    scopus 로고
    • Kernel-Based Extreme Learning Machine for Remote-Sensing Image Classification
    • Pal, M., A. E. Maxwell, and T. A. Warner. 2013. “Kernel-Based Extreme Learning Machine for Remote-Sensing Image Classification.” Remote Sensing Letters 4: 853–862. doi:10.1080/2150704X.2013.805279.
    • (2013) Remote Sensing Letters , vol.4 , pp. 853-862
    • Pal, M.1    Maxwell, A.E.2    Warner, T.A.3
  • 22
    • 0032793730 scopus 로고    scopus 로고
    • Deforestation in North-Central Yucatan (1985–1995): Mapping Secondary Succession of Forest and Agricultural Land Use in Sotuta Using the Cosine of the Angle Concept
    • Sohn, Y., E. Morgan, and F. Gurri. 1999. “Deforestation in North-Central Yucatan (1985–1995): Mapping Secondary Succession of Forest and Agricultural Land Use in Sotuta Using the Cosine of the Angle Concept.” Photogrammetric Engineering and Remote Sensing 65: 947–958.
    • (1999) Photogrammetric Engineering and Remote Sensing , vol.65 , pp. 947-958
    • Sohn, Y.1    Morgan, E.2    Gurri, F.3
  • 24
    • 84865656808 scopus 로고    scopus 로고
    • Selection of Classification Techniques for Land Use/Land Cover Change Investigation
    • Srivastava, P. K., D. Han, M. A. Rico-Ramirez, M. Bray, and T. Islam. 2012. “Selection of Classification Techniques for Land Use/Land Cover Change Investigation.” Advances in Space Research 50: 1250–1265. doi:10.1016/j.asr.2012.06.032.
    • (2012) Advances in Space Research , vol.50 , pp. 1250-1265
    • Srivastava, P.K.1    Han, D.2    Rico-Ramirez, M.A.3    Bray, M.4    Islam, T.5
  • 25
    • 33846901577 scopus 로고    scopus 로고
    • Support Vector Machines for Recognition of Semi-Arid Vegetation Types Using MISR Multi-Angle Imagery
    • Su, L., M. J. Chopping, A. Rango, J. V. Martonchik, and D. P. C. Peters. 2007. “Support Vector Machines for Recognition of Semi-Arid Vegetation Types Using MISR Multi-Angle Imagery.” Remote Sensing of Environment 107: 299–311. doi:10.1016/j.rse.2006.05.023.
    • (2007) Remote Sensing of Environment , vol.107 , pp. 299-311
    • Su, L.1    Chopping, M.J.2    Rango, A.3    Martonchik, J.V.4    Peters, D.P.C.5
  • 28
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of Support Vector Machines for Classification of Multisensor Data
    • Waske, B., and J. A. Benediktsson. 2007. “Fusion of Support Vector Machines for Classification of Multisensor Data.” IEEE Transactions on Geoscience and Remote Sensing 45: 3858–3866. doi:10.1109/TGRS.2007.898446.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , pp. 3858-3866
    • Waske, B.1    Benediktsson, J.A.2
  • 29
    • 34547657940 scopus 로고    scopus 로고
    • Maximum Likelihood Classification Combined with Spectral Angle Mapper Algorithm for High Resolution Satellite Imagery
    • Yonezawa, C. 2007. “Maximum Likelihood Classification Combined with Spectral Angle Mapper Algorithm for High Resolution Satellite Imagery.” International Journal of Remote Sensing 28: 3729–3737. doi:10.1080/01431160701373713.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 3729-3737
    • Yonezawa, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.