-
1
-
-
84857710417
-
Optimization With Sparsity-Inducing Penalties,
-
Bach, F., Jenatton, R., Mairal, J., Obozinski, G. (2011), Optimization With Sparsity-Inducing Penalties, Foundations and Trends in Machine Learning, 4, 1–106. Available at http://dx.doi.org/doi:10.1561/2200000015.
-
(2011)
Foundations and Trends in Machine Learning
, vol.4
, pp. 1-106
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
2
-
-
41549101939
-
Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data
-
Banerjee, O., Ghaoui, L., d’Aspremont, A. (2008), Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data, The Journal of Machine Learning Research, 9, 485–516.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
Ghaoui, L.2
d’Aspremont, A.3
-
3
-
-
84926076587
-
Gradient-Based Algorithms With Applications to Signal Recovery Problems,
-
eds. D. Palomar and Y. Eldar
-
Beck, A., Teboulle, M. (2010), Gradient-Based Algorithms With Applications to Signal Recovery Problems, in Convex Optimization in Signal Processing and Communications, eds. D. Palomar and Y. Eldar, 42–88, Cambridge: Cambridge University Press.
-
(2010)
inConvex Optimization in Signal Processing and Communications
, pp. 40-42
-
-
Beck, A.1
Teboulle, M.2
-
4
-
-
84856004485
-
Templates for Convex Cone Problems With Applications to Sparse Signal Recovery,
-
Becker, S.R., Candès, E.J., Grant, M.C. (2011), Templates for Convex Cone Problems With Applications to Sparse Signal Recovery, Mathematical Programming Computation, 3, 165–218.
-
(2011)
Mathematical Programming Computation
, vol.3
, pp. 165-218
-
-
Becker, S.R.1
Candès, E.J.2
Grant, M.C.3
-
5
-
-
0000913755
-
Spatial Interaction and the Statistical Analysis of Lattice Systems,
-
Besag, J. (1974), Spatial Interaction and the Statistical Analysis of Lattice Systems, Journal of the Royal Statistical Society, Series B, 36, 192–236.
-
(1974)
Journal of the Royal Statistical Society, Series B
, vol.36
, pp. 192-236
-
-
Besag, J.1
-
6
-
-
0000582521
-
Statistical Analysis of Non-Lattice Data,
-
(1975), Statistical Analysis of Non-Lattice Data, The Statistician, 179–195.
-
(1975)
The Statistician
, pp. 179-195
-
-
-
7
-
-
84926206843
-
-
arXiv preprint arXiv:1304.2810
-
Cheng, J., Levina, E., Zhu, J. (2013), High-Dimensional Mixed Graphical Models, arXiv preprint arXiv:1304.2810.
-
(2013)
High-Dimensional Mixed Graphical Models,
-
-
Cheng, J.1
Levina, E.2
Zhu, J.3
-
8
-
-
84976486021
-
Proximal Splitting Methods in Signal Processing,
-
eds. H. H. Bauschke et al.,, New York: Springer
-
Combettes, P.L., Pesquet, J.C. (2011), Proximal Splitting Methods in Signal Processing, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, eds. H. H. Bauschke et al.,,. New York: Springer, pp. 185–212.
-
(2011)
Fixed-Point Algorithms for Inverse Problems in Science and Engineering
, pp. 185-212
-
-
Combettes, P.L.1
Pesquet, J.C.2
-
10
-
-
45849107328
-
Pathwise Coordinate Optimization
-
Friedman, J., Hastie, T., Höfling, H., Tibshirani, R. (2007), Pathwise Coordinate Optimization, The Annals of Applied Statistics, 1, 302–332.
-
(2007)
The Annals of Applied Statistics
, vol.1
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
11
-
-
45849134070
-
Sparse Inverse Covariance Estimation With the Graphical Lasso,
-
Friedman, J., Hastie, T., Tibshirani, R. (2008), Sparse Inverse Covariance Estimation With the Graphical Lasso, Biostatistics, 9, 432–441.
-
(2008)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
12
-
-
84926189721
-
-
Technical Report, Stanford University
-
——— (2010), “Applications of the Lasso and Grouped Lasso to the Estimation of Sparse Graphical Models,” Technical Report, Stanford University.
-
(2010)
-
-
-
13
-
-
84862302659
-
-
Guo, J., Levina, E., Michailidis, G., Zhu, J. (2010), Joint Structure Estimation for Categorical Markov Networks, available at http://www.stat.lsa.umich.edu/~elevina.
-
(2010)
Joint Structure Estimation for Categorical Markov Networks,
-
-
Guo, J.1
Levina, E.2
Michailidis, G.3
Zhu, J.4
-
14
-
-
66549109770
-
Estimation of Sparse Binary Pairwise Markov Networks Using Pseudo-Likelihoods
-
Höfling, H., Tibshirani, R. (2009), Estimation of Sparse Binary Pairwise Markov Networks Using Pseudo-Likelihoods, The Journal of Machine Learning Research, 10, 883–906.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 883-906
-
-
Höfling, H.1
Tibshirani, R.2
-
15
-
-
84860635352
-
On Learning Discrete Graphical Models Using Group-Sparse Regularization,
-
Jalali, A., Ravikumar, P., Vasuki, V., Sanghavi, S., ECE, UT, and CS, UT (2011), “On Learning Discrete Graphical Models Using Group-Sparse Regularization,” in Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).
-
(2011)
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)
-
-
Jalali, A.1
Ravikumar, P.2
Vasuki, V.3
Sanghavi, S.4
Ece, U.5
Cs, U.6
-
16
-
-
66349089385
-
A Multivariate Regression Approach to Association Analysis of a Quantitative Trait Network
-
Kim, S., Sohn, K.-A., Xing, E.P. (2009), A Multivariate Regression Approach to Association Analysis of a Quantitative Trait Network, Bioinformatics, 25, i204–i212.
-
(2009)
Bioinformatics
, vol.25
, pp. i204-i212
-
-
Kim, S.1
Sohn, K.-A.2
Xing, E.P.3
-
18
-
-
25444533246
-
-
Departmental Papers (CIS), Paper 159
-
Lafferty, J., McCallum, A., Pereira, F. C.N. (2001), Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.” Departmental Papers (CIS), Paper 159, available at http://repository.upenn.edu/cis_papers/159
-
(2001)
Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.C.N.3
-
20
-
-
84877787651
-
-
arXiv preprint arXiv:1206.1623
-
Lee, J.D., Sun, Y., Saunders, M.A. (2012), Proximal Newton-Type Methods for Minimizing Convex Objective Functions in Composite Form, arXiv preprint arXiv:1206.1623.
-
(2012)
Proximal Newton-Type Methods for Minimizing Convex Objective Functions in Composite Form,
-
-
Lee, J.D.1
Sun, Y.2
Saunders, M.A.3
-
21
-
-
84926185416
-
-
arXiv preprint arXiv:1305.7477
-
Lee, J.D., Sun, Y., Taylor, J. (2013), On Model Selection Consistency of M-estimators With Geometrically Decomposable Penalties, arXiv preprint arXiv:1305.7477.
-
(2013)
On Model Selection Consistency of M-estimators With Geometrically Decomposable Penalties,
-
-
Lee, J.D.1
Sun, Y.2
Taylor, J.3
-
22
-
-
70049111780
-
Efficient Structure Learning of Markov Networks Using L1 regularization,
-
Lee, S.I., Ganapathi, V., Koller, D. (2006), Efficient Structure Learning of Markov Networks Using L1 regularization, in Advances in Neural Information Processing Systems, 817–827.
-
(2006)
Advances in Neural Information Processing Systems
, pp. 817-827
-
-
Lee, S.I.1
Ganapathi, V.2
Koller, D.3
-
23
-
-
56449098139
-
An Asymptotic Analysis of Generative, Discriminative, and Pseudolikelihood Estimators,
-
ACM
-
Liang, P., and Jordan, M.I. (2008), “An Asymptotic Analysis of Generative, Discriminative, and Pseudolikelihood Estimators,” in Proceedings of the 25th International Conference on Machine Learning, ACM, pp. 584–591.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 584-591
-
-
Liang, P.1
Jordan, M.I.2
-
26
-
-
33747163541
-
High-Dimensional Graphs and Variable Selection With the Lasso
-
Meinshausen, N., Bühlmann, P. (2006), High-Dimensional Graphs and Variable Selection With the Lasso, The Annals of Statistics, 34, 1436–1462.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
27
-
-
66549116888
-
Partial Correlation Estimation by Joint Sparse Regression Models
-
Peng, J., Wang, P., Zhou, N., Zhu, J. (2009), Partial Correlation Estimation by Joint Sparse Regression Models, Journal of the American Statistical Association, 104, 735–746.
-
(2009)
Journal of the American Statistical Association
, vol.104
, pp. 735-746
-
-
Peng, J.1
Wang, P.2
Zhou, N.3
Zhu, J.4
-
28
-
-
77951455815
-
High-Dimensional Ising Model Selection Using l1-Regularized Logistic Regression
-
Ravikumar, P., Wainwright, M.J., Lafferty, J.D. (2010), High-Dimensional Ising Model Selection Using l1-Regularized Logistic Regression, The Annals of Statistics, 38, 1287–1319.
-
(2010)
The Annals of Statistics
, vol.38
, pp. 1287-1319
-
-
Ravikumar, P.1
Wainwright, M.J.2
Lafferty, J.D.3
-
29
-
-
79952797027
-
Sparse Multivariate Regression With Covariance Estimation
-
Rothman, A.J., Levina, E., Zhu, J. (2010), Sparse Multivariate Regression With Covariance Estimation, Journal of Computational and Graphical Statistics, 19, 947–962.
-
(2010)
Journal of Computational and Graphical Statistics
, vol.19
, pp. 947-962
-
-
Rothman, A.J.1
Levina, E.2
Zhu, J.3
-
31
-
-
84857722294
-
-
in Optimization for Machine Learning, Cambridge, MA: MIT Press
-
Schmidt, M., Kim, D., Sra, S. (2011), Projected Newton-Type Methods in Machine Learning, in Optimization for Machine Learning, Cambridge, MA: MIT Press.
-
(2011)
Projected Newton-Type Methods in Machine Learning,
-
-
Schmidt, M.1
Kim, D.2
Sra, S.3
-
32
-
-
51949118201
-
Structure Learning in Random Fields for Heart Motion Abnormality Detection,
-
Schmidt, M., Murphy, K., Fung, G., Rosales, R. (2008), Structure Learning in Random Fields for Heart Motion Abnormality Detection, CVPR, IEEE Computer Society.
-
(2008)
CVPR, IEEE Computer Society
-
-
Schmidt, M.1
Murphy, K.2
Fung, G.3
Rosales, R.4
-
34
-
-
66849143711
-
Covariance-Regularized Regression and Classification for High Dimensional Problems
-
Witten, D.M., Tibshirani, R. (2009), Covariance-Regularized Regression and Classification for High Dimensional Problems, Journal of the Royal Statistical Society, Series B, 71, 615–636.
-
(2009)
Journal of the Royal Statistical Society, Series B
, vol.71
, pp. 615-636
-
-
Witten, D.M.1
Tibshirani, R.2
-
35
-
-
67650178787
-
Sparse Reconstruction by Separable Approximation
-
Wright, S.J., Nowak, R.D., Figueiredo, M. A.T. (2009), Sparse Reconstruction by Separable Approximation, IEEE Transactions on Signal Processing, 57, 2479–2493.
-
(2009)
IEEE Transactions on Signal Processing
, vol.57
, pp. 2479-2493
-
-
Wright, S.J.1
Nowak, R.D.2
Figueiredo, M.A.T.3
-
36
-
-
84877773753
-
Graphical Models via Generalized Linear Models,
-
Yang, E., Ravikumar, P., Allen, G. I., and Liu, Z. (2012), “Graphical Models via Generalized Linear Models,” in Advances in Neural Information Processing Systems25, 1367–1375.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1367-1375
-
-
Yang, E.1
Ravikumar, P.2
Allen, G.I.3
Liu, Z.4
-
37
-
-
84926184889
-
-
arXiv preprint arXiv:1301.4183
-
(2013), On Graphical Models via Univariate Exponential Family Distributions, arXiv preprint arXiv:1301.4183.
-
(2013)
-
-
-
38
-
-
33645035051
-
Model Selection and Estimation in Regression With Grouped Variables
-
Yuan, M., Lin, Y. (2006), Model Selection and Estimation in Regression With Grouped Variables, Journal of the Royal Statistical Society, Series B, 68, 49–67.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
|