메뉴 건너뛰기




Volumn 32, Issue 3, 2014, Pages 359-374

Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators

Author keywords

Bridge estimation; Common factors; Selection consistency

Indexed keywords


EID: 84925934601     PISSN: 07350015     EISSN: 15372707     Source Type: Journal    
DOI: 10.1080/07350015.2014.880349     Document Type: Article
Times cited : (46)

References (44)
  • 1
    • 77958467466 scopus 로고    scopus 로고
    • Improved Penalization for Determining the Number of Factors in Approximate Factor Models
    • Alessi, L., Barigozzi, M., and Capasso, M. (2010), “Improved Penalization for Determining the Number of Factors in Approximate Factor Models,” Statistics and Probability Letters, 80, 1806–1813.
    • (2010) Statistics and Probability Letters , vol.80 , pp. 1806-1813
    • Alessi, L.1    Barigozzi, M.2    Capasso, M.3
  • 2
    • 33846041971 scopus 로고    scopus 로고
    • Consistent Estimation of the Number of Dynamic Factors in a Large N And T Panel
    • Amengual, D., and Watson, M. (2007), “Consistent Estimation of the Number of Dynamic Factors in a Large N And T Panel,” Journal of Business and Economic Statistics, 25, 91–96.
    • (2007) Journal of Business and Economic Statistics , vol.25 , pp. 91-96
    • Amengual, D.1    Watson, M.2
  • 3
    • 0037277111 scopus 로고    scopus 로고
    • Inferential Theory for Factor Models of Large Dimensions
    • Bai, J. (2003), “Inferential Theory for Factor Models of Large Dimensions,” Econometrica, 71, 135–173.
    • (2003) Econometrica , vol.71 , pp. 135-173
    • Bai, J.1
  • 4
    • 0036221554 scopus 로고    scopus 로고
    • Determining the Number of Factors in Approximate Factor Models
    • Bai, J., and Ng, S. (2002), “Determining the Number of Factors in Approximate Factor Models,” Econometrica, 70, 191–221.
    • (2002) Econometrica , vol.70 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 5
    • 33846119127 scopus 로고    scopus 로고
    • Determining the Number of Primitive Shocks in Factor Models
    • Bai, J., and Ng, S. (2007), “Determining the Number of Primitive Shocks in Factor Models,” Journal of Business and Economic Statistics, 25, 52–60.
    • (2007) Journal of Business and Economic Statistics , vol.25 , pp. 52-60
    • Bai, J.1    Ng, S.2
  • 6
    • 53649085867 scopus 로고    scopus 로고
    • Forecasting Economic Time Series Using Targeted Predictors
    • Bai, J., and Ng, S. (2008), “Forecasting Economic Time Series Using Targeted Predictors,” Journal of Econometrics, 146, 304–317.
    • (2008) Journal of Econometrics , vol.146 , pp. 304-317
    • Bai, J.1    Ng, S.2
  • 7
    • 15544377383 scopus 로고    scopus 로고
    • Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach
    • Bernanke, B.S., Boivin, J., and Eliasz, P. (2005), “Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach,” Quarterly Journal of Economics, 120, 387–422.
    • (2005) Quarterly Journal of Economics , vol.120 , pp. 387-422
    • Bernanke, B.S.1    Boivin, J.2    Eliasz, P.3
  • 8
    • 38049135901 scopus 로고    scopus 로고
    • DSGE Models in a Data-Rich Environment
    • No. 12772
    • Boivin, J., and Giannoni, M. (2006), “DSGE Models in a Data-Rich Environment,” NBER Working Paper, No. 12772.
    • (2006) NBER Working Paper
    • Boivin, J.1    Giannoni, M.2
  • 9
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of Instability and Stabilization in Model Selection
    • Breiman, L. (1996), “Heuristics of Instability and Stabilization in Model Selection,” The Annals of Statistics, 24, 2350–2383.
    • (1996) The Annals of Statistics , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 10
    • 79956356524 scopus 로고    scopus 로고
    • Testing For Structural Breaks in Dynamic Factor Models
    • Breitung, J., and Eickmeier, S. (2011), “Testing For Structural Breaks in Dynamic Factor Models,” Journal of Econometrics, 163, 71–84.
    • (2011) Journal of Econometrics , vol.163 , pp. 71-84
    • Breitung, J.1    Eickmeier, S.2
  • 11
    • 84871479116 scopus 로고    scopus 로고
    • An Alternative to Unit Root Tests: Bridge Estimators Differentiate Between Nonstationary Versus Stationary Models and Select Optimal Lag
    • Caner, M., and Knight, K. (2013), “An Alternative to Unit Root Tests: Bridge Estimators Differentiate Between Nonstationary Versus Stationary Models and Select Optimal Lag,” Journal of Statistical Planning and Inference, 143, 691–715.
    • (2013) Journal of Statistical Planning and Inference , vol.143 , pp. 691-715
    • Caner, M.1    Knight, K.2
  • 13
    • 0000915180 scopus 로고
    • Arbitrage, Factor Structure, and Mean Variance Analysis on Large Asset Markets
    • Chamberlain, G., and Rothschild, M. (1983), “Arbitrage, Factor Structure, and Mean Variance Analysis on Large Asset Markets,” Econometrica, 51, 1281–1304.
    • (1983) Econometrica , vol.51 , pp. 1281-1304
    • Chamberlain, G.1    Rothschild, M.2
  • 15
    • 53649093540 scopus 로고    scopus 로고
    • Forecasting Using a Large Number of Predictors: Is Bayesian Shrinkage a Valid Alternative to Principal Components
    • De Mol, C., Giannone, D., and Reichlin, L. (2008), “Forecasting Using a Large Number of Predictors: Is Bayesian Shrinkage a Valid Alternative to Principal Components,” Journal of Econometrics, 146, 318–328.
    • (2008) Journal of Econometrics , vol.146 , pp. 318-328
    • De Mol, C.1    Giannone, D.2    Reichlin, L.3
  • 16
    • 0041958932 scopus 로고
    • Ideal Spatial Adaptation by Wavelet Shrinkage
    • Donoho, D., and Johnstone, I. (1994), “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika, 81, 425–455.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 17
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties
    • Fan, J., and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties,” Journal of the American Statistical Association, 96, 1348–1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 18
    • 76349125785 scopus 로고    scopus 로고
    • The Dynamic Effects of Monetary Policy: A Structural Factor Model Approach
    • Forni, M., and Gambetti, L. (2010), “The Dynamic Effects of Monetary Policy: A Structural Factor Model Approach,” Journal of Monetary Economics, 57, 203–216.
    • (2010) Journal of Monetary Economics , vol.57 , pp. 203-216
    • Forni, M.1    Gambetti, L.2
  • 19
    • 0034364595 scopus 로고    scopus 로고
    • The Generalized Dynamic Factor Model: Identification and Estimation
    • Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000), “The Generalized Dynamic Factor Model: Identification and Estimation,” Review of Economics Statistics, 82, 540–554.
    • (2000) Review of Economics Statistics , vol.82 , pp. 540-554
    • Forni, M.1    Hallin, M.2    Lippi, M.3    Reichlin, L.4
  • 22
    • 0033472952 scopus 로고    scopus 로고
    • Common and Country-Specific Fluctuations in Productivity, Investment, and the Current Account
    • Gregory, A., and Head, A. (1999), “Common and Country-Specific Fluctuations in Productivity, Investment, and the Current Account,” Journal of Monetary Economics, 44, 423–452.
    • (1999) Journal of Monetary Economics , vol.44 , pp. 423-452
    • Gregory, A.1    Head, A.2
  • 23
    • 84925959279 scopus 로고    scopus 로고
    • Determining the Number of Factors with Potentially Strong Cross-sectional Correlation in Idiosyncratic Shocks
    • unpublished manuscript, North Carolina State University
    • Han, X. (2012), “Determining the Number of Factors with Potentially Strong Cross-sectional Correlation in Idiosyncratic Shocks,” unpublished manuscript, North Carolina State University.
    • (2012)
    • Han, X.1
  • 24
    • 34250778808 scopus 로고    scopus 로고
    • The Generalized Dynamic Factor Model: Determining the Number of Factors
    • Hallin, M., and Liska, R. (2007), “The Generalized Dynamic Factor Model: Determining the Number of Factors,” Journal of the American Statistical Association, 102, 603–617.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 603-617
    • Hallin, M.1    Liska, R.2
  • 25
    • 84861211116 scopus 로고    scopus 로고
    • Variable Selection via the Weighted Group LASSO for Factor Analysis Models
    • Hirose, K., and Konishi, S. (2012), “Variable Selection via the Weighted Group LASSO for Factor Analysis Models,” The Canadian Journal of Statistics, 40, 345–361.
    • (2012) The Canadian Journal of Statistics , vol.40 , pp. 345-361
    • Hirose, K.1    Konishi, S.2
  • 26
    • 66249102619 scopus 로고    scopus 로고
    • A Group Bridge Approach for Variable Selection
    • Huang, J., Ma, S., Xie, H., and Zhang, C. (2009), “A Group Bridge Approach for Variable Selection,” Biometrika, 96, 339–355.
    • (2009) Biometrika , vol.96 , pp. 339-355
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.4
  • 27
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic Properties of Bridge Estimators in Sparse High-Dimensional Regression Models
    • Huang, J., Horowitz, J., and Ma, S. (2008), “Asymptotic Properties of Bridge Estimators in Sparse High-Dimensional Regression Models,” The Annals of Statistics, 36, 587–613.
    • (2008) The Annals of Statistics , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.2    Ma, S.3
  • 28
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso Type Estimators
    • Knight, K., and Fu, W. (2000), “Asymptotics for Lasso Type Estimators,” The Annals of Statistics, 28, 1356–1378.
    • (2000) The Annals of Statistics , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 29
    • 78649393421 scopus 로고    scopus 로고
    • A Testing Procedure for Determining the Number of Factors in Approximate Factor Models with Large Datasets
    • Kapetanios, G. (2010), “A Testing Procedure for Determining the Number of Factors in Approximate Factor Models with Large Datasets,” Journal of Business and Economic Statistics, 28, 397–409.
    • (2010) Journal of Business and Economic Statistics , vol.28 , pp. 397-409
    • Kapetanios, G.1
  • 30
    • 0001326961 scopus 로고
    • The Rank of Demand Systems: Theory and Nonparametric Estimation
    • Lewbel, A. (1991), “The Rank of Demand Systems: Theory and Nonparametric Estimation,” Econometrica, 59, 711–730.
    • (1991) Econometrica , vol.59 , pp. 711-730
    • Lewbel, A.1
  • 31
    • 73149086049 scopus 로고    scopus 로고
    • Contour Projected Dimension Reduction
    • Luo, R., Wang, H., and Tsai, C.L. (2009), “Contour Projected Dimension Reduction,” The Annals of Statistics, 37, 3743–3778.
    • (2009) The Annals of Statistics , vol.37 , pp. 3743-3778
    • Luo, R.1    Wang, H.2    Tsai, C.L.3
  • 32
    • 70349835782 scopus 로고    scopus 로고
    • Testing Hypotheses About the Number of Factors in Large Factor Models
    • Onatski, A. (2009), “Testing Hypotheses About the Number of Factors in Large Factor Models,” Econometrica, 77, 1447–1479.
    • (2009) Econometrica , vol.77 , pp. 1447-1479
    • Onatski, A.1
  • 33
    • 78650967353 scopus 로고    scopus 로고
    • Determining the Number of Factors From Empirical Distribution of Eigenvalues
    • Onatski, A. (2010), “Determining the Number of Factors From Empirical Distribution of Eigenvalues,” The Review of Economics and Statistics, 92, 1004–1016.
    • (2010) The Review of Economics and Statistics , vol.92 , pp. 1004-1016
    • Onatski, A.1
  • 34
    • 0003331699 scopus 로고
    • Business Cycle Modelling Without Pretending to Have Too Much a-priori Economic Theory
    • Sims et al., (ed), Minneapolis, MN: Federal Reserve Bank of Minneapolis
    • Sargent, T.J., and Sims, C.A. (1977), “Business Cycle Modelling Without Pretending to Have Too Much a-priori Economic Theory,” in New Methods in Business Cycle Research, eds. Sims et al., Minneapolis, MN: Federal Reserve Bank of Minneapolis.
    • (1977) New Methods in Business Cycle Research
    • Sargent, T.J.1    Sims, C.A.2
  • 35
    • 84877901545 scopus 로고    scopus 로고
    • Eigenvalue Ratio Test for the Number of Factors
    • Seung, A., and Horenstein, A. (2013), “Eigenvalue Ratio Test for the Number of Factors,” Econometrica, 81, 1203–1227.
    • (2013) Econometrica , vol.81 , pp. 1203-1227
    • Seung, A.1    Horenstein, A.2
  • 36
    • 0000076932 scopus 로고
    • New Indexes of Coincident and Leading Economic Indications
    • Blanchard O. J., Fischer S., (eds), Cambridge: MIT press
    • Stock, J., and Watson, M. (1989), “New Indexes of Coincident and Leading Economic Indications,” in NBER Macroeconomics Annual 1989, eds. O. J. Blanchard and S. Fischer, Cambridge: MIT press.
    • (1989) NBER Macroeconomics Annual 1989
    • Stock, J.1    Watson, M.2
  • 38
    • 33750196583 scopus 로고    scopus 로고
    • Implications of Dynamic Factor Models for VAR Analysis
    • NBER Working Paper, 11647
    • Stock, J., and Watson, M. (2005), “Implications of Dynamic Factor Models for VAR Analysis,” NBER Working Paper, 11647.
    • (2005)
    • Stock, J.1    Watson, M.2
  • 40
    • 70349842458 scopus 로고    scopus 로고
    • Macroeconomic Dynamics in the Euro Area. Discussion by Harald Uhlig
    • Acemoglu D., Rogoff K., Woodford M., (eds)
    • Uhlig, H. (2009), “Macroeconomic Dynamics in the Euro Area. Discussion by Harald Uhlig,” in NBER Macroeconomics Annual 23, ed. D. Acemoglu, K. Rogoff, and M. Woodford.
    • (2009) NBER Macroeconomics Annual 23
    • Uhlig, H.1
  • 41
    • 84863252835 scopus 로고    scopus 로고
    • Factor Profiled Sure Independence Screening
    • Wang, H. (2012), “Factor Profiled Sure Independence Screening,” Biometrika, 99, 15–28.
    • (2012) Biometrika , vol.99 , pp. 15-28
    • Wang, H.1
  • 42
    • 66849138434 scopus 로고    scopus 로고
    • Shrinkage Tuning Parameter Selection With a Diverging Number of Parameters
    • Wang, H., Li, B., and Leng, C. (2009), “Shrinkage Tuning Parameter Selection With a Diverging Number of Parameters,” Journal of the Royal Statistical Society, 71, 671–683.
    • (2009) Journal of the Royal Statistical Society , vol.71 , pp. 671-683
    • Wang, H.1    Li, B.2    Leng, C.3
  • 43
    • 33645035051 scopus 로고    scopus 로고
    • Model Selection and Estimation in Regression With Grouped Variables
    • Yuan, M., and Lin, Y. (2006), “Model Selection and Estimation in Regression With Grouped Variables,” Journal of the Royal Statistical Society, 68, 49–67.
    • (2006) Journal of the Royal Statistical Society , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 44
    • 62549126570 scopus 로고    scopus 로고
    • On the Adaptive Elastic Net With a Diverging Number of Parameters
    • Zou, H., and Zhang, H. (2009), “On the Adaptive Elastic Net With a Diverging Number of Parameters,” The Annals of Statistics, 37, 1733–1751.
    • (2009) The Annals of Statistics , vol.37 , pp. 1733-1751
    • Zou, H.1    Zhang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.