메뉴 건너뛰기




Volumn 24, Issue , 2015, Pages 228-237

A novel PSO-LSSVM model for predicting liquid rate of two phase flow through wellhead chokes

Author keywords

Choke; Kernel function; LSSVM; PSO; Two phase flow

Indexed keywords

ELECTRIC INDUCTORS; FORECASTING; LIQUIDS; PARTICLE SWARM OPTIMIZATION (PSO); PETROLEUM INDUSTRY; RIVERS; SUPPORT VECTOR MACHINES; WELLHEADS;

EID: 84925697115     PISSN: 18755100     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jngse.2015.03.013     Document Type: Article
Times cited : (82)

References (44)
  • 2
    • 0023961606 scopus 로고
    • Revised bean performance equation for East Baghdad oil wells
    • Al-Attar H., Abdul-Majeed G. Revised bean performance equation for East Baghdad oil wells. SPE Prod. Eng. 1988, 3(01):127-131.
    • (1988) SPE Prod. Eng. , vol.3 , Issue.1 , pp. 127-131
    • Al-Attar, H.1    Abdul-Majeed, G.2
  • 6
    • 0016091917 scopus 로고
    • An evaluation of critical multiphase flow performance through wellhead chokes
    • Ashford F. An evaluation of critical multiphase flow performance through wellhead chokes. J.Petroleum Technol. 1974, 26(08):843-850.
    • (1974) J.Petroleum Technol. , vol.26 , Issue.8 , pp. 843-850
    • Ashford, F.1
  • 8
    • 0016557570 scopus 로고
    • Determining multiphase pressure drops and flow capacities in down-hole safety valves
    • Ashford F.E., Pierce P.E. Determining multiphase pressure drops and flow capacities in down-hole safety valves. J. Petrol. Technol. 1975, 27:9.
    • (1975) J. Petrol. Technol. , vol.27 , pp. 9
    • Ashford, F.E.1    Pierce, P.E.2
  • 10
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46(1-3):131-159.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 11
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17(1):113-126.
    • (2004) Neural Netw. , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 13
    • 0029517385 scopus 로고
    • (Paper presented at the Proceedings of the sixth international symposium on micro machine and human science)
    • Eberhart R.C., Kennedy J. ANew Optimizer Using Particle Swarm Theory 1995, (Paper presented at the Proceedings of the sixth international symposium on micro machine and human science).
    • (1995) ANew Optimizer Using Particle Swarm Theory
    • Eberhart, R.C.1    Kennedy, J.2
  • 14
    • 84919781547 scopus 로고    scopus 로고
    • On determination of natural gas density: least square support vector machine modeling approach
    • Esfahani S., Baselizadeh S., Hemmati-Sarapardeh A. On determination of natural gas density: least square support vector machine modeling approach. J.Nat. Gas Sci. Eng. 2015, 22(0):348-358. 10.1016/j.jngse.2014.12.003.
    • (2015) J.Nat. Gas Sci. Eng. , vol.22 , Issue.0 , pp. 348-358
    • Esfahani, S.1    Baselizadeh, S.2    Hemmati-Sarapardeh, A.3
  • 17
    • 85054120918 scopus 로고
    • Flowing and gas-lift well performance
    • Gilbert W. Flowing and gas-lift well performance. API Drill. Prod. Pract. 1954, 20(1954):126-157.
    • (1954) API Drill. Prod. Pract. , vol.20 , Issue.1954 , pp. 126-157
    • Gilbert, W.1
  • 19
    • 84925769774 scopus 로고    scopus 로고
    • 5-Choke performance
    • Gulf Professional Publishing, Burlington, B.G.C.L. Ghalambor (Ed.)
    • Guo B., Lyons W.C., Ghalambor A. 5-Choke performance. Petroleum Production Engineering 2007, 59-67. Gulf Professional Publishing, Burlington. B.G.C.L. Ghalambor (Ed.).
    • (2007) Petroleum Production Engineering , pp. 59-67
    • Guo, B.1    Lyons, W.C.2    Ghalambor, A.3
  • 20
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems
    • Lorena A.C., De Carvalho A.C. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 2008, 71(16):3326-3334.
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3326-3334
    • Lorena, A.C.1    De Carvalho, A.C.2
  • 21
    • 84906338028 scopus 로고    scopus 로고
    • Forecasting of coal seam gas content by using support vector regression based on particle swarm optimization
    • Meng Q., Ma X., Zhou Y. Forecasting of coal seam gas content by using support vector regression based on particle swarm optimization. J.Nat. Gas Sci. Eng. 2014, 21(0):71-78. 10.1016/j.jngse.2014.07.032.
    • (2014) J.Nat. Gas Sci. Eng. , vol.21 , Issue.0 , pp. 71-78
    • Meng, Q.1    Ma, X.2    Zhou, Y.3
  • 23
    • 84896367768 scopus 로고    scopus 로고
    • Prediction of natural gas flow through chokes using support vector machine algorithm
    • Nejatian I., Kanani M., Arabloo M., Bahadori A., Zendehboudi S. Prediction of natural gas flow through chokes using support vector machine algorithm. J.Nat. Gas Sci. Eng. 2014, 18(0):155-163. 10.1016/j.jngse.2014.02.008.
    • (2014) J.Nat. Gas Sci. Eng. , vol.18 , Issue.0 , pp. 155-163
    • Nejatian, I.1    Kanani, M.2    Arabloo, M.3    Bahadori, A.4    Zendehboudi, S.5
  • 24
    • 1642549279 scopus 로고
    • New charts developed to predict gas-liquid flow through chokes
    • Poettmann F., Beck R. New charts developed to predict gas-liquid flow through chokes. World Oil 1963, 184(3):95-100.
    • (1963) World Oil , vol.184 , Issue.3 , pp. 95-100
    • Poettmann, F.1    Beck, R.2
  • 25
    • 51249193567 scopus 로고
    • An analysis of critical simultaneous gas/liquid flow through a restriction and its application to flow metering
    • Ros N. An analysis of critical simultaneous gas/liquid flow through a restriction and its application to flow metering. Appl. Sci. Res. 1960, 9(1):374-388.
    • (1960) Appl. Sci. Res. , vol.9 , Issue.1 , pp. 374-388
    • Ros, N.1
  • 26
    • 84872804547 scopus 로고    scopus 로고
    • Introducing a new correlation for multiphase flow through surface chokes with newly incorporated parameters
    • Safar Beiranvand M., Babaei Khorzoughi M. Introducing a new correlation for multiphase flow through surface chokes with newly incorporated parameters. SPE Prod. Operations 2012, 27(04):422-428.
    • (2012) SPE Prod. Operations , vol.27 , Issue.4 , pp. 422-428
    • Safar Beiranvand, M.1    Babaei Khorzoughi, M.2
  • 27
    • 84912019724 scopus 로고    scopus 로고
    • An e-E-insensitive support vector regression machine
    • Safari A. An e-E-insensitive support vector regression machine. Comput. Stat. 2014, 1-22.
    • (2014) Comput. Stat. , pp. 1-22
    • Safari, A.1
  • 30
    • 84916641476 scopus 로고    scopus 로고
    • Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach
    • Shafiei A., Ahmadi M.A., Zaheri S.H., Baghban A., Amirfakhrian A., Soleimani R. Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach. J.Supercrit. Fluids 2014, 95(0):525-534. 10.1016/j.supflu.2014.08.011.
    • (2014) J.Supercrit. Fluids , vol.95 , Issue.0 , pp. 525-534
    • Shafiei, A.1    Ahmadi, M.A.2    Zaheri, S.H.3    Baghban, A.4    Amirfakhrian, A.5    Soleimani, R.6
  • 32
    • 0001045808 scopus 로고    scopus 로고
    • Empirical study of particle swarm optimization. Paper presented at the Evolutionary Computation, 1999. CEC 99
    • Shi Y., Eberhart R.C. Empirical study of particle swarm optimization. Paper presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on 1999.
    • (1999) Proceedings of the 1999 Congress on
    • Shi, Y.1    Eberhart, R.C.2
  • 33
    • 4043137356 scopus 로고    scopus 로고
    • Atutorial on support vector regression
    • Smola A.J., Schölkopf B. Atutorial on support vector regression. Statistics Comput. 2004, 14(3):199-222.
    • (2004) Statistics Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 34
    • 84925704448 scopus 로고    scopus 로고
    • Basic Methods of Least Squares Support Vector Machines
    • World Scientific Publishing Co. Pte. Ltd
    • Suykens Johan A.K., Gestel Tony Van, Moor Bart De, Vandewalle Joos Basic Methods of Least Squares Support Vector Machines. Least Squares Support Vector Machines 2002, World Scientific Publishing Co. Pte. Ltd. http://www.worldscientific.com/doi/abs/10.1142/9789812776655_0003.
    • (2002) Least Squares Support Vector Machines
    • Suykens, J.A.K.1    Gestel, T.V.2    Moor, B.D.3    Vandewalle, J.4
  • 35
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 40
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V.N. An overview of statistical learning theory. Neural Netw. IEEE Trans. 1999, 10(5):988-999.
    • (1999) Neural Netw. IEEE Trans. , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 41
    • 84925811027 scopus 로고    scopus 로고
    • (Paper presented at the International Conference on Artificial Intelligence and Statistics)
    • Ye J., Xiong T. SVM versus Least Squares SVM 2007, (Paper presented at the International Conference on Artificial Intelligence and Statistics).
    • (2007) SVM versus Least Squares SVM
    • Ye, J.1    Xiong, T.2
  • 42
    • 84925741041 scopus 로고    scopus 로고
    • 4-9 May 1998, Paper presented at the Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on
    • Yuhui S., Eberhart R. AModified Particle Swarm Optimizer 1998, 4-9 May 1998, Paper presented at the Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on.
    • (1998) AModified Particle Swarm Optimizer
    • Yuhui, S.1    Eberhart, R.2
  • 44
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • Zhou J., Shi J., Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 2011, 52(4):1990-1998.
    • (2011) Energy Convers. Manag. , vol.52 , Issue.4 , pp. 1990-1998
    • Zhou, J.1    Shi, J.2    Li, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.