-
2
-
-
0023961606
-
Revised bean performance equation for East Baghdad oil wells
-
Al-Attar H., Abdul-Majeed G. Revised bean performance equation for East Baghdad oil wells. SPE Prod. Eng. 1988, 3(01):127-131.
-
(1988)
SPE Prod. Eng.
, vol.3
, Issue.1
, pp. 127-131
-
-
Al-Attar, H.1
Abdul-Majeed, G.2
-
6
-
-
0016091917
-
An evaluation of critical multiphase flow performance through wellhead chokes
-
Ashford F. An evaluation of critical multiphase flow performance through wellhead chokes. J.Petroleum Technol. 1974, 26(08):843-850.
-
(1974)
J.Petroleum Technol.
, vol.26
, Issue.8
, pp. 843-850
-
-
Ashford, F.1
-
8
-
-
0016557570
-
Determining multiphase pressure drops and flow capacities in down-hole safety valves
-
Ashford F.E., Pierce P.E. Determining multiphase pressure drops and flow capacities in down-hole safety valves. J. Petrol. Technol. 1975, 27:9.
-
(1975)
J. Petrol. Technol.
, vol.27
, pp. 9
-
-
Ashford, F.E.1
Pierce, P.E.2
-
10
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46(1-3):131-159.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
11
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17(1):113-126.
-
(2004)
Neural Netw.
, vol.17
, Issue.1
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
12
-
-
84899013173
-
Support vector regression machines
-
Drucker H., Burges C.J., Kaufman L., Smola A., Vapnik V. Support vector regression machines. Adv. Neural Inform. Process. Syst. 1997, 9:155-161.
-
(1997)
Adv. Neural Inform. Process. Syst.
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
13
-
-
0029517385
-
-
(Paper presented at the Proceedings of the sixth international symposium on micro machine and human science)
-
Eberhart R.C., Kennedy J. ANew Optimizer Using Particle Swarm Theory 1995, (Paper presented at the Proceedings of the sixth international symposium on micro machine and human science).
-
(1995)
ANew Optimizer Using Particle Swarm Theory
-
-
Eberhart, R.C.1
Kennedy, J.2
-
14
-
-
84919781547
-
On determination of natural gas density: least square support vector machine modeling approach
-
Esfahani S., Baselizadeh S., Hemmati-Sarapardeh A. On determination of natural gas density: least square support vector machine modeling approach. J.Nat. Gas Sci. Eng. 2015, 22(0):348-358. 10.1016/j.jngse.2014.12.003.
-
(2015)
J.Nat. Gas Sci. Eng.
, vol.22
, Issue.0
, pp. 348-358
-
-
Esfahani, S.1
Baselizadeh, S.2
Hemmati-Sarapardeh, A.3
-
17
-
-
85054120918
-
Flowing and gas-lift well performance
-
Gilbert W. Flowing and gas-lift well performance. API Drill. Prod. Pract. 1954, 20(1954):126-157.
-
(1954)
API Drill. Prod. Pract.
, vol.20
, Issue.1954
, pp. 126-157
-
-
Gilbert, W.1
-
19
-
-
84925769774
-
5-Choke performance
-
Gulf Professional Publishing, Burlington, B.G.C.L. Ghalambor (Ed.)
-
Guo B., Lyons W.C., Ghalambor A. 5-Choke performance. Petroleum Production Engineering 2007, 59-67. Gulf Professional Publishing, Burlington. B.G.C.L. Ghalambor (Ed.).
-
(2007)
Petroleum Production Engineering
, pp. 59-67
-
-
Guo, B.1
Lyons, W.C.2
Ghalambor, A.3
-
20
-
-
56549085451
-
Evolutionary tuning of SVM parameter values in multiclass problems
-
Lorena A.C., De Carvalho A.C. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 2008, 71(16):3326-3334.
-
(2008)
Neurocomputing
, vol.71
, Issue.16
, pp. 3326-3334
-
-
Lorena, A.C.1
De Carvalho, A.C.2
-
21
-
-
84906338028
-
Forecasting of coal seam gas content by using support vector regression based on particle swarm optimization
-
Meng Q., Ma X., Zhou Y. Forecasting of coal seam gas content by using support vector regression based on particle swarm optimization. J.Nat. Gas Sci. Eng. 2014, 21(0):71-78. 10.1016/j.jngse.2014.07.032.
-
(2014)
J.Nat. Gas Sci. Eng.
, vol.21
, Issue.0
, pp. 71-78
-
-
Meng, Q.1
Ma, X.2
Zhou, Y.3
-
23
-
-
84896367768
-
Prediction of natural gas flow through chokes using support vector machine algorithm
-
Nejatian I., Kanani M., Arabloo M., Bahadori A., Zendehboudi S. Prediction of natural gas flow through chokes using support vector machine algorithm. J.Nat. Gas Sci. Eng. 2014, 18(0):155-163. 10.1016/j.jngse.2014.02.008.
-
(2014)
J.Nat. Gas Sci. Eng.
, vol.18
, Issue.0
, pp. 155-163
-
-
Nejatian, I.1
Kanani, M.2
Arabloo, M.3
Bahadori, A.4
Zendehboudi, S.5
-
24
-
-
1642549279
-
New charts developed to predict gas-liquid flow through chokes
-
Poettmann F., Beck R. New charts developed to predict gas-liquid flow through chokes. World Oil 1963, 184(3):95-100.
-
(1963)
World Oil
, vol.184
, Issue.3
, pp. 95-100
-
-
Poettmann, F.1
Beck, R.2
-
25
-
-
51249193567
-
An analysis of critical simultaneous gas/liquid flow through a restriction and its application to flow metering
-
Ros N. An analysis of critical simultaneous gas/liquid flow through a restriction and its application to flow metering. Appl. Sci. Res. 1960, 9(1):374-388.
-
(1960)
Appl. Sci. Res.
, vol.9
, Issue.1
, pp. 374-388
-
-
Ros, N.1
-
26
-
-
84872804547
-
Introducing a new correlation for multiphase flow through surface chokes with newly incorporated parameters
-
Safar Beiranvand M., Babaei Khorzoughi M. Introducing a new correlation for multiphase flow through surface chokes with newly incorporated parameters. SPE Prod. Operations 2012, 27(04):422-428.
-
(2012)
SPE Prod. Operations
, vol.27
, Issue.4
, pp. 422-428
-
-
Safar Beiranvand, M.1
Babaei Khorzoughi, M.2
-
27
-
-
84912019724
-
An e-E-insensitive support vector regression machine
-
Safari A. An e-E-insensitive support vector regression machine. Comput. Stat. 2014, 1-22.
-
(2014)
Comput. Stat.
, pp. 1-22
-
-
Safari, A.1
-
28
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
Scholkopf B., Mika S., Burges C.J., Knirsch P., Muller K., Ratsch G., Smola A.J. Input space versus feature space in kernel-based methods. Neural Netw. IEEE Trans. 1999, 10(5):1000-1017.
-
(1999)
Neural Netw. IEEE Trans.
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Scholkopf, B.1
Mika, S.2
Burges, C.J.3
Knirsch, P.4
Muller, K.5
Ratsch, G.6
Smola, A.J.7
-
29
-
-
0003408420
-
-
MIT press
-
Schölkopf B., Smola A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond 2002, MIT press.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
30
-
-
84916641476
-
Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach
-
Shafiei A., Ahmadi M.A., Zaheri S.H., Baghban A., Amirfakhrian A., Soleimani R. Estimating hydrogen sulfide solubility in ionic liquids using a machine learning approach. J.Supercrit. Fluids 2014, 95(0):525-534. 10.1016/j.supflu.2014.08.011.
-
(2014)
J.Supercrit. Fluids
, vol.95
, Issue.0
, pp. 525-534
-
-
Shafiei, A.1
Ahmadi, M.A.2
Zaheri, S.H.3
Baghban, A.4
Amirfakhrian, A.5
Soleimani, R.6
-
32
-
-
0001045808
-
Empirical study of particle swarm optimization. Paper presented at the Evolutionary Computation, 1999. CEC 99
-
Shi Y., Eberhart R.C. Empirical study of particle swarm optimization. Paper presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on 1999.
-
(1999)
Proceedings of the 1999 Congress on
-
-
Shi, Y.1
Eberhart, R.C.2
-
33
-
-
4043137356
-
Atutorial on support vector regression
-
Smola A.J., Schölkopf B. Atutorial on support vector regression. Statistics Comput. 2004, 14(3):199-222.
-
(2004)
Statistics Comput.
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
34
-
-
84925704448
-
Basic Methods of Least Squares Support Vector Machines
-
World Scientific Publishing Co. Pte. Ltd
-
Suykens Johan A.K., Gestel Tony Van, Moor Bart De, Vandewalle Joos Basic Methods of Least Squares Support Vector Machines. Least Squares Support Vector Machines 2002, World Scientific Publishing Co. Pte. Ltd. http://www.worldscientific.com/doi/abs/10.1142/9789812776655_0003.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Gestel, T.V.2
Moor, B.D.3
Vandewalle, J.4
-
35
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.1
Vandewalle, J.2
-
38
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Vapnik V., Golowich S.E., Smola A. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 1997, 281-287.
-
(1997)
Advances in Neural Information Processing Systems
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.E.2
Smola, A.3
-
40
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik V.N. An overview of statistical learning theory. Neural Netw. IEEE Trans. 1999, 10(5):988-999.
-
(1999)
Neural Netw. IEEE Trans.
, vol.10
, Issue.5
, pp. 988-999
-
-
Vapnik, V.N.1
-
41
-
-
84925811027
-
-
(Paper presented at the International Conference on Artificial Intelligence and Statistics)
-
Ye J., Xiong T. SVM versus Least Squares SVM 2007, (Paper presented at the International Conference on Artificial Intelligence and Statistics).
-
(2007)
SVM versus Least Squares SVM
-
-
Ye, J.1
Xiong, T.2
-
42
-
-
84925741041
-
-
4-9 May 1998, Paper presented at the Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on
-
Yuhui S., Eberhart R. AModified Particle Swarm Optimizer 1998, 4-9 May 1998, Paper presented at the Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on.
-
(1998)
AModified Particle Swarm Optimizer
-
-
Yuhui, S.1
Eberhart, R.2
-
44
-
-
78650944534
-
Fine tuning support vector machines for short-term wind speed forecasting
-
Zhou J., Shi J., Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers. Manag. 2011, 52(4):1990-1998.
-
(2011)
Energy Convers. Manag.
, vol.52
, Issue.4
, pp. 1990-1998
-
-
Zhou, J.1
Shi, J.2
Li, G.3
|