메뉴 건너뛰기




Volumn 29, Issue 6, 2014, Pages 1447-1468

An e–E-insensitive support vector regression machine

Author keywords

Support vector regression machine; Financial time series; Loss function; Noise process

Indexed keywords


EID: 84912019724     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-014-0500-7     Document Type: Article
Times cited : (7)

References (26)
  • 1
    • 0030193984 scopus 로고    scopus 로고
    • Introduction to financial forecasting
    • Abu-Mostafa YS, Atiya AF (1996) Introduction to financial forecasting. Appl Intell 6:205–213
    • (1996) Appl Intell , vol.6 , pp. 205-213
    • Abu-Mostafa, Y.S.1    Atiya, A.F.2
  • 5
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17:113–126
    • (2004) Neural Netw , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 8
    • 0034205755 scopus 로고    scopus 로고
    • Statistical learning theory: a primer
    • Evgeniou T, Pontil M, Poggio T (2000) Statistical learning theory: a primer. Int J Comput Vis 38(1):9–13
    • (2000) Int J Comput Vis , vol.38 , Issue.1 , pp. 9-13
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 9
    • 0035399722 scopus 로고    scopus 로고
    • Noisy time series prediction using a recurrent neural network and grammatical inference
    • Giles CL, Lawrence S, Tsoi AC (2001) Noisy time series prediction using a recurrent neural network and grammatical inference. Mach Learn 44(1/2):161–183
    • (2001) Mach Learn , vol.44 , Issue.1-2 , pp. 161-183
    • Giles, C.L.1    Lawrence, S.2    Tsoi, A.C.3
  • 10
    • 84863165439 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining, inference
    • Springer series in statistics (second Edition, CA:
    • Hasti T, Tibshirani R, Friedman J (2008) The elements of statistical learning: data mining, inference, and prediction. Springer series in statistics (second Edition), CA
    • (2008) and prediction
    • Hasti, T.1    Tibshirani, R.2    Friedman, J.3
  • 11
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim KJ (2003) Financial time series forecasting using support vector machines. Neurocomputing 55:307–319
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.J.1
  • 13
    • 0032203519 scopus 로고    scopus 로고
    • Financial markets: very noisy information processing
    • Magdon-Ismail M, Nicholson A, Abu-Mostafa YS (1998) Financial markets: very noisy information processing. Proc IEEE 86(11):2184–2195
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2184-2195
    • Magdon-Ismail, M.1    Nicholson, A.2    Abu-Mostafa, Y.S.3
  • 16
    • 84912010477 scopus 로고    scopus 로고
    • Fat-tailed and skewed asset return distributions: implications for risk management, portfolio selection, and option pricing
    • Rachev ST, Menn C, Fabozzi FJ (2005) Fat-tailed and skewed asset return distributions: implications for risk management, portfolio selection, and option pricing. Wiley Finance
    • (2005) Wiley Finance
    • Rachev, S.T.1    Menn, C.2    Fabozzi, F.J.3
  • 19
    • 34848861893 scopus 로고    scopus 로고
    • Fractals or I.I.D.: evidence of long-range dependence and heavy tailedness from modeling German market returns
    • Sun W, Rachev S, Fabozzi FJ (2007) Fractals or I.I.D.: evidence of long-range dependence and heavy tailedness from modeling German market returns. J Econ Bus 59:575–595
    • (2007) J Econ Bus , vol.59 , pp. 575-595
    • Sun, W.1    Rachev, S.2    Fabozzi, F.J.3
  • 20
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay FEH, Cao L (2001) Application of support vector machines in financial time series forecasting. Omega 29:309–317
    • (2001) Omega , vol.29 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 21
    • 0003466536 scopus 로고
    • Splines models for observational data, series in applied mathematics, vol 59
    • Wahba G (1990) Splines models for observational data, series in applied mathematics, vol 59, Philadelphia
    • (1990) Philadelphia
    • Wahba, G.1
  • 23
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik VN, Chervonenkis AY (1971) On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab Its Appl 17(2):264–280
    • (1971) Theory Probab Its Appl , vol.17 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 24
    • 84947943630 scopus 로고    scopus 로고
    • Support vector machine regression for volatile stock market prediction. Springer, Berlin
    • Yang H, Chan L, King I (2002) Support vector machine regression for volatile stock market prediction. Springer, Berlin, IDEAL, pp 391–396
    • (2002) IDEAL , pp. 391-396
    • Yang, H.1    Chan, L.2    King, I.3
  • 25
    • 35048832408 scopus 로고    scopus 로고
    • Outliers treatment in support vector regression for financial time series prediction. Springer, Berlin
    • Yang H, Huang K, Chan L, King I, Lyu MR (2004) Outliers treatment in support vector regression for financial time series prediction. Springer, Berlin, ICONIP, pp 1260–1265
    • (2004) ICONIP , pp. 1260-1265
    • Yang, H.1    Huang, K.2    Chan, L.3    King, I.4    Lyu, M.R.5
  • 26
    • 84912042838 scopus 로고    scopus 로고
    • The concave–convex procedure (CCCP), advances in neural information processing systems
    • MIT Press, Cambridge, MA:
    • Yuille AL, Rangarajan A (2004) The concave–convex procedure (CCCP), advances in neural information processing systems, 14. MIT Press, Cambridge, MA
    • (2004) 14
    • Yuille, A.L.1    Rangarajan, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.