메뉴 건너뛰기




Volumn 22, Issue , 2015, Pages 348-358

On determination of natural gas density: Least square support vector machine modeling approach

Author keywords

Density; Intelligent model; Least square support vector machine; Natural gas

Indexed keywords

COMPUTER SIMULATION; DENSITY (SPECIFIC GRAVITY); GAS ENGINEERING; GASES; MOLECULAR WEIGHT; NATURAL GAS; SIMULATED ANNEALING; SUPPORT VECTOR MACHINES;

EID: 84919781547     PISSN: 18755100     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jngse.2014.12.003     Document Type: Article
Times cited : (55)

References (39)
  • 2
    • 83555169084 scopus 로고    scopus 로고
    • Artificial neural networks modeling for hydrocarbon gas viscosity and density estimation
    • AlQuraishi A.A., Shokir E.M. Artificial neural networks modeling for hydrocarbon gas viscosity and density estimation. J.King Saud University-Engineering Sci. 2011, 23:123-129.
    • (2011) J.King Saud University-Engineering Sci. , vol.23 , pp. 123-129
    • AlQuraishi, A.A.1    Shokir, E.M.2
  • 4
    • 0041780661 scopus 로고    scopus 로고
    • Viscosity of natural-gas mixtures: measurements and prediction
    • Assael M., Dalaouti N., Vesovic V. Viscosity of natural-gas mixtures: measurements and prediction. Int. J. Thermophys. 2001, 22:61-71.
    • (2001) Int. J. Thermophys. , vol.22 , pp. 61-71
    • Assael, M.1    Dalaouti, N.2    Vesovic, V.3
  • 5
    • 0015626398 scopus 로고
    • Astudy of two-phase flow in inclined pipes
    • Beggs D.H., Brill J.P. Astudy of two-phase flow in inclined pipes. J.Petroleum Technol. 1973, 25:607-617.
    • (1973) J.Petroleum Technol. , vol.25 , pp. 607-617
    • Beggs, D.H.1    Brill, J.P.2
  • 6
    • 36849139164 scopus 로고
    • An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n-butane
    • Benedict M., Webb G.B., Rubin L.C. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. Methane, ethane, propane and n-butane. J.Chem. Phys. 1940, 8:334-345.
    • (1940) J.Chem. Phys. , vol.8 , pp. 334-345
    • Benedict, M.1    Webb, G.B.2    Rubin, L.C.3
  • 10
    • 0016523254 scopus 로고
    • Calculation of Z factors for natural gases using equations of state
    • Dranchuk P., Abou-Kassem H. Calculation of Z factors for natural gases using equations of state. J.Can. Petroleum Technol. 1975, 14.
    • (1975) J.Can. Petroleum Technol. , vol.14
    • Dranchuk, P.1    Abou-Kassem, H.2
  • 11
    • 1542617749 scopus 로고    scopus 로고
    • Efficient methods for calculations of compressibility, density and viscosity of natural gases
    • Elsharkawy A.M. Efficient methods for calculations of compressibility, density and viscosity of natural gases. Fluid Phase Equilibria 2004, 218:1-13.
    • (2004) Fluid Phase Equilibria , vol.218 , pp. 1-13
    • Elsharkawy, A.M.1
  • 12
    • 84855174209 scopus 로고    scopus 로고
    • Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+ water soluble organic promoters using support vector machine algorithm
    • Eslamimanesh A., Gharagheizi F., Illbeigi M., Mohammadi A.H., Fazlali A., Richon D. Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen+ water soluble organic promoters using support vector machine algorithm. Fluid Phase Equilibria 2012, 316:34-45.
    • (2012) Fluid Phase Equilibria , vol.316 , pp. 34-45
    • Eslamimanesh, A.1    Gharagheizi, F.2    Illbeigi, M.3    Mohammadi, A.H.4    Fazlali, A.5    Richon, D.6
  • 13
    • 84892771569 scopus 로고    scopus 로고
    • State of the art of least square support vector machine for accurate determination of natural gas viscosity
    • Fayazi A., Arabloo M., Shokrollahi A., Zargari M.H., Ghazanfari M.H. State of the art of least square support vector machine for accurate determination of natural gas viscosity. Indus. Eng. Chem. Res. 2013, 53(2):945-958.
    • (2013) Indus. Eng. Chem. Res. , vol.53 , Issue.2 , pp. 945-958
    • Fayazi, A.1    Arabloo, M.2    Shokrollahi, A.3    Zargari, M.H.4    Ghazanfari, M.H.5
  • 18
    • 84919326643 scopus 로고    scopus 로고
    • Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids
    • Hosseinzadeh M., Hemmati-Sarapardeh A. Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids. J. Mol. Liq. 2014, 200:340-348.
    • (2014) J. Mol. Liq. , vol.200 , pp. 340-348
    • Hosseinzadeh, M.1    Hemmati-Sarapardeh, A.2
  • 21
    • 84893875594 scopus 로고    scopus 로고
    • Efficient screening of enhanced oil recovery methods and predictive economic analysis
    • Kamari A., Nikookar M., Sahranavard L., Mohammadi A. Efficient screening of enhanced oil recovery methods and predictive economic analysis. Neural Comput Applic 2014, 25:815-824.
    • (2014) Neural Comput Applic , vol.25 , pp. 815-824
    • Kamari, A.1    Nikookar, M.2    Sahranavard, L.3    Mohammadi, A.4
  • 22
    • 84908139358 scopus 로고    scopus 로고
    • Acompositional model for estimating asphaltene precipitation conditions in live reservoir oil systems
    • Kamari A., Safiri A., Mohammadi A.H. Acompositional model for estimating asphaltene precipitation conditions in live reservoir oil systems. J.Dispersion Sci. Technol. 2014, 36(3):301-309.
    • (2014) J.Dispersion Sci. Technol. , vol.36 , Issue.3 , pp. 301-309
    • Kamari, A.1    Safiri, A.2    Mohammadi, A.H.3
  • 24
    • 35649007404 scopus 로고    scopus 로고
    • Dynamic viscosity measurements of three natural gas mixtures-comparison against prediction models
    • Langelandsvik L., Solvang S., Rousselet M., Metaxa I., Assael M. Dynamic viscosity measurements of three natural gas mixtures-comparison against prediction models. Int. J. Thermophys. 2007, 28:1120-1130.
    • (2007) Int. J. Thermophys. , vol.28 , pp. 1120-1130
    • Langelandsvik, L.1    Solvang, S.2    Rousselet, M.3    Metaxa, I.4    Assael, M.5
  • 25
    • 84861317068 scopus 로고    scopus 로고
    • Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids
    • Lashkarbolooki M., Hezave A.Z., Ayatollahi S. Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids. Fluid Phase Equilibria 2012, 324:102-107.
    • (2012) Fluid Phase Equilibria , vol.324 , pp. 102-107
    • Lashkarbolooki, M.1    Hezave, A.Z.2    Ayatollahi, S.3
  • 26
    • 33845751746 scopus 로고    scopus 로고
    • Simplified correlations for hydrocarbon gas viscosity and gas density-validation and correlation of behavior using a large-scale database
    • Londono F., Archer R., Blasingame T. Simplified correlations for hydrocarbon gas viscosity and gas density-validation and correlation of behavior using a large-scale database. SPE Gas Technology Symposium, Society of Petroleum Engineers 2002.
    • (2002) SPE Gas Technology Symposium, Society of Petroleum Engineers
    • Londono, F.1    Archer, R.2    Blasingame, T.3
  • 27
    • 0016561759 scopus 로고
    • An improved generalized BWR equation of state applicable to low reduced temperatures
    • Nishiumi H., Saito S. An improved generalized BWR equation of state applicable to low reduced temperatures. J.Chem. Eng. Jpn. 1975, 8:356-360.
    • (1975) J.Chem. Eng. Jpn. , vol.8 , pp. 356-360
    • Nishiumi, H.1    Saito, S.2
  • 29
    • 85056419304 scopus 로고
    • The multiphase flow of gas oil and water through vertical flow strings with application to the design of gas-lift installations
    • Poettman F.H., Carpenter P.G. The multiphase flow of gas oil and water through vertical flow strings with application to the design of gas-lift installations. Drilling and Production Practice 1952.
    • (1952) Drilling and Production Practice
    • Poettman, F.H.1    Carpenter, P.G.2
  • 32
    • 55149120115 scopus 로고    scopus 로고
    • Novel density and viscosity correlations for gases and gas mixtures containing hydrocarbon and non-hydrocarbon components
    • Shokir E.E.-M. Novel density and viscosity correlations for gases and gas mixtures containing hydrocarbon and non-hydrocarbon components. J.Can. Petroleum Technol. 2008, 47:45-54.
    • (2008) J.Can. Petroleum Technol. , vol.47 , pp. 45-54
    • Shokir, E.E.-M.1
  • 34
    • 0001348511 scopus 로고
    • Density of natural gases
    • Standing M.B., Katz D.L. Density of natural gases. Trans. AIME 1942, 146:140-149.
    • (1942) Trans. AIME , vol.146 , pp. 140-149
    • Standing, M.B.1    Katz, D.L.2
  • 35
    • 34447345674 scopus 로고    scopus 로고
    • Fundamental PVT calculations for associated and gas/condensate natural-gas systems
    • Sutton R.P. Fundamental PVT calculations for associated and gas/condensate natural-gas systems. SPE Reserv. Eval. Eng. 2007, 10:270-284.
    • (2007) SPE Reserv. Eval. Eng. , vol.10 , pp. 270-284
    • Sutton, R.P.1
  • 36
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9:293-300.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.1    Vandewalle, J.2
  • 38
    • 84894568295 scopus 로고    scopus 로고
    • Ahybrid optimized artificial intelligent model to forecast crude oil using genetic algorithm
    • Tehrani R., Fariba K. Ahybrid optimized artificial intelligent model to forecast crude oil using genetic algorithm. Afr. J. Bus. Manag. 2011, 5:13130-13135.
    • (2011) Afr. J. Bus. Manag. , vol.5 , pp. 13130-13135
    • Tehrani, R.1    Fariba, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.