메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1-165

Preventing and treating missing data in longitudinal clinical trials: A practical guide

(1)  Mallinckrodt, Craig H a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84925666907     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1017/CBO9781139381666     Document Type: Book
Times cited : (44)

References (84)
  • 4
    • 84925592713 scopus 로고    scopus 로고
    • accessed May 28, 2009
    • Centre for Research Methodology. (2009). Online at: http://www. pcpoh.bham.ac.uk/publichealth/methodology/projects/RM03 JH17 MK.shtml (accessed May 28, 2009).
    • (2009)
  • 5
    • 0030670430 scopus 로고    scopus 로고
    • Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data
    • Cnaan, A., Laird, N. M., and Slasor, P. (1997). Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statistics in Medicine, 16 (20): 2349–2380.
    • (1997) Statistics in Medicine , vol.16 , Issue.20 , pp. 2349-2380
    • Cnaan, A.1    Laird, N.M.2    Slasor, P.3
  • 6
    • 11944272254 scopus 로고
    • A power primer
    • Cohen, J. (1992). A power primer. Psychological Bulletin, 112: 155–159.
    • (1992) Psychological Bulletin , vol.112 , pp. 155-159
    • Cohen, J.1
  • 7
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L., and Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychology Methods, 6 (4): 330–351.
    • (2001) Psychology Methods , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 8
    • 84925620347 scopus 로고    scopus 로고
    • Guideline on missing data in confirmatory clinical trials
    • Committee for Medicinal Products for Human Use (CHMP)
    • Committee for Medicinal Products for Human Use (CHMP). (2010). Guideline on missing data in confirmatory clinical trials. EMA/CPMP/EWP/1776/99 Rev. 1.
    • (2010) EMA/CPMP/EWP/1776/99 Rev , pp. 1
  • 11
  • 12
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis (With discussion)
    • Diggle, P. D., and Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion). Applied Statistics, 43: 49– 93.
    • (1994) Applied Statistics , vol.43
    • Diggle, P.D.1    Kenward, M.G.2
  • 14
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty (With discussion)
    • Draper D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society B, 57: 45.
    • (1995) Journal of the Royal Statistical Society B , vol.57 , pp. 45
    • Draper, D.1
  • 18
    • 79551622288 scopus 로고    scopus 로고
    • Addressing missing data in clinical trials
    • Fleming, T. R. (2011). Addressing missing data in clinical trials. Annals of Internal Medicine, 154: 113–117.
    • (2011) Annals of Internal Medicine , vol.154 , pp. 113-117
    • Fleming, T.R.1
  • 20
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • Harville, David A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72 (358): 320–338.
    • (1977) Journal of the American Statistical Association , vol.72 , Issue.358 , pp. 320-338
    • Harville, D.A.1
  • 21
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan, J. W., and Laird, N. M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine, 16: 239–258.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-258
    • Hogan, J.W.1    Laird, N.M.2
  • 23
    • 84925620346 scopus 로고    scopus 로고
    • ICH guidelines
    • ICH guidelines. Online at: http://www.ich.org/cache/compo/276–254-1.html
  • 26
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with non-random dropout: An illustration of sensitivity
    • Kenward, M. G. (1998). Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. Statistics in Medicine, 17 (23): 2723–2732.
    • (1998) Statistics in Medicine , vol.17 , Issue.23 , pp. 2723-2732
    • Kenward, M.G.1
  • 27
    • 79952600996 scopus 로고    scopus 로고
    • Missing data handling in chronic pain trials
    • Kim, Y. (2011). Missing data handling in chronic pain trials. Journal of Biopharmaceutical Statistics, 21 (2): 311–325.
    • (2011) Journal of Biopharmaceutical Statistics , vol.21 , Issue.2 , pp. 311-325
    • Kim, Y.1
  • 28
    • 0034116120 scopus 로고    scopus 로고
    • The impact of restrictive entry criterion during the placebo lead-in period
    • Landin, R., DeBrota, D. J., DeVries, T. A., Potter, W. Z., and Demitrack, M. A. (2000). The impact of restrictive entry criterion during the placebo lead-in period. Biometrics, 56 (1): 271–278.
    • (2000) Biometrics , vol.56 , Issue.1 , pp. 271-278
    • Landin, R.1    DeBrota, D.J.2    DeVries, T.A.3    Potter, W.Z.4    Demitrack, M.A.5
  • 29
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M., and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38 (4): 963–974.
    • (1982) Biometrics , vol.38 , Issue.4 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 30
    • 0002373852 scopus 로고
    • Informative dropout in longitudinal data analysis
    • Laird, N. M. (1994). Informative dropout in longitudinal data analysis. Applied Statistics, 43: 84.
    • (1994) Applied Statistics , vol.43 , pp. 84
    • Laird, N.M.1
  • 31
    • 36549073578 scopus 로고    scopus 로고
    • Bias reduction with an adjustment for participants’ intent to drop out of a randomized controlled clinical trial
    • Leon, A. C., Hakan, D., and Hedeken, D. (2007). Bias reduction with an adjustment for participants’ intent to drop out of a randomized controlled clinical trial. Clinical Trials, 4: 540–547.
    • (2007) Clinical Trials , vol.4 , pp. 540-547
    • Leon, A.C.1    Hakan, D.2    Hedeken, D.3
  • 32
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang, K. Y., and Zeger, S. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73 (1): 13–22.
    • (1986) Biometrika , vol.73 , Issue.1 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.2
  • 33
    • 0003244085 scopus 로고    scopus 로고
    • Longitudinal data analysis of continuous and discrete responses for pre-post designs
    • Liang, K. Y., and Zeger, S. (2000). Longitudinal data analysis of continuous and discrete responses for pre-post designs. Sankhya: The Indian Journal of Statistics, 62 (Series B): 134–148.
    • (2000) Sankhya: The Indian Journal of Statistics , vol.62 , pp. 134-148
    • Liang, K.Y.1    Zeger, S.2
  • 34
    • 29544452758 scopus 로고    scopus 로고
    • Multiple imputation compared with restricted pseudo-likelihood and generalized estimating equations for analysis of binary repeated measures in clinical studies
    • Lipkovich, I., Duan, Y., and Ahmed, S. (2005). Multiple imputation compared with restricted pseudo-likelihood and generalized estimating equations for analysis of binary repeated measures in clinical studies. Pharmaceutical Statistics, 4 (4): 267–285.
    • (2005) Pharmaceutical Statistics , vol.4 , Issue.4 , pp. 267-285
    • Lipkovich, I.1    Duan, Y.2    Ahmed, S.3
  • 35
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little, R. J. A. (1993). Pattern-mixture models for multivariate incomplete data. Journal of American Statistical Association, 88 (421): 125– 134.
    • (1993) Journal of American Statistical Association , vol.88 , Issue.421
    • Little, R.1
  • 36
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little, R. J. A. (1994). A class of pattern-mixture models for normal incomplete data. Biometrika, 81 (3): 471–483.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 471-483
    • Little, R.1
  • 37
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated measures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated measures studies. Journal of American Statistical Association, 90 (431): 1112–1121.
    • (1995) Journal of American Statistical Association , vol.90 , Issue.431 , pp. 1112-1121
    • Little, R.1
  • 39
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis for longitudinal studies with drop-outs
    • Little, R., and Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics, 52 (4): 1324–1333.
    • (1996) Biometrics , vol.52 , Issue.4 , pp. 1324-1333
    • Little, R.1    Yau, L.2
  • 40
    • 0032365866 scopus 로고    scopus 로고
    • Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using rubin’s causal model
    • Little, R. J. A., and Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin’s causal model. Psychological Methods, 3: 147–159.
    • (1998) Psychological Methods , vol.3 , pp. 147-159
    • Little, R.1    Yau, L.2
  • 41
    • 0036399487 scopus 로고    scopus 로고
    • Comparison of alternative strategies for analysis of longitudinal trials with dropouts
    • Liu, G., and Gould, A. L. (2002). Comparison of alternative strategies for analysis of longitudinal trials with dropouts. Journal of Biopharmaceutical Statistics, 12 (2): 207–226.
    • (2002) Journal of Biopharmaceutical Statistics , vol.12 , Issue.2 , pp. 207-226
    • Liu, G.1    Gould, A.L.2
  • 42
    • 76549126699 scopus 로고    scopus 로고
    • Specification of covariance structure in longitudinal data analysis for randomized clinical trials
    • Lu, K., and Mehrotra, D. (2009). Specification of covariance structure in longitudinal data analysis for randomized clinical trials. Statistics in Medicine, 4: 474–488.
    • (2009) Statistics in Medicine , vol.4 , pp. 474-488
    • Lu, K.1    Mehrotra, D.2
  • 43
    • 21844459497 scopus 로고    scopus 로고
    • An index of local sensitivity to nonignorable drop-out in longitudinal modeling
    • Ma, G., Troxel, A. B., and Heitjan, D. F. (2005). An index of local sensitivity to nonignorable drop-out in longitudinal modeling. Statistics in Medicine, 24 (14): 2129–2150.
    • (2005) Statistics in Medicine , vol.24 , Issue.14 , pp. 2129-2150
    • Ma, G.1    Troxel, A.B.2    Heitjan, D.F.3
  • 44
    • 0037273401 scopus 로고    scopus 로고
    • Assessing response profiles from incomplete longitudinal clinical trial data under regulatory considerations
    • Mallinckrodt, C. H., Clark, S. W., Carroll, R. J., and Molenberghs, G. (2003). Assessing response profiles from incomplete longitudinal clinical trial data under regulatory considerations. Journal of Biopharmaceutical Statistics, 13 (2): 179–190.
    • (2003) Journal of Biopharmaceutical Statistics , vol.13 , Issue.2 , pp. 179-190
    • Mallinckrodt, C.H.1    Clark, S.W.2    Carroll, R.J.3    Molenberghs, G.4
  • 45
    • 33644630414 scopus 로고    scopus 로고
    • The effect of correlation structure on treatment contrasts estimated from incomplete clinical trial data with likelihood-based repeated measures compared with last observation carried forward anova
    • Mallinckrodt, C. H., Kaiser, C. J., Watkin, J. G., Molenberghs, G., and Carroll, R. J. (2004). The effect of correlation structure on treatment contrasts estimated from incomplete clinical trial data with likelihood-based repeated measures compared with last observation carried forward ANOVA. Clinical Trials, 1 (6): 477–489.
    • (2004) Clinical Trials , vol.1 , Issue.6 , pp. 477-489
    • Mallinckrodt, C.H.1    Kaiser, C.J.2    Watkin, J.G.3    Molenberghs, G.4    Carroll, R.J.5
  • 46
    • 84996238075 scopus 로고    scopus 로고
    • Conceptual considerations regarding choice of endpoints, hypotheses, and analyses in longitudinal clinical trials. Drug information journal
    • Mallinckrodt, C. H., and Kenward, M. G. (2009). Conceptual considerations regarding choice of endpoints, hypotheses, and analyses in longitudinal clinical trials. Drug Information Journal, 43 (4): 449– 458.
    • (2009) 43 (4): 449– 458
    • Mallinckrodt, C.H.1    Kenward, M.G.2
  • 47
    • 47149084982 scopus 로고    scopus 로고
    • Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials
    • Mallinckrodt, C. H., Lane, P. W., Schnell, D., Peng, Y., and Mancuso, J. P. (2008). Recommendations for the primary analysis of continuous endpoints in longitudinal clinical trials. Drug Information Journal, 42: 305–319.
    • (2008) Drug Information Journal , vol.42 , pp. 305-319
    • Mallinckrodt, C.H.1    Lane, P.W.2    Schnell, D.3    Peng, Y.4    Mancuso, J.P.5
  • 48
    • 84925675174 scopus 로고    scopus 로고
    • Mallinckrodt, C. H., Lin, Q., Lipkovich, I., and Molenberghs, G. (forth-coming). A structured approach to choosing estimands and estimators in longitudinal clinical trials.Pharmaceutical Statistics, (In Press)
    • Mallinckrodt, C. H., Lin, Q., Lipkovich, I., and Molenberghs, G. (forth-coming). A structured approach to choosing estimands and estimators in longitudinal clinical trials. Pharmaceutical Statistics, (In Press).
  • 49
    • 80051667331 scopus 로고    scopus 로고
    • Improving signal detection and reducing placebo response in psychiatric clinical trials
    • Mallinckrodt, C. H., Tamura, R. N., and Tanaka, Y. (2011). Improving signal detection and reducing placebo response in psychiatric clinical trials. Journal of Psychiatric Research, 45: 1202–1207.
    • (2011) Journal of Psychiatric Research , vol.45 , pp. 1202-1207
    • Mallinckrodt, C.H.1    Tamura, R.N.2    Tanaka, Y.3
  • 51
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input
    • Meng, X.-L. (1994). Multiple-imputation inferences with uncongenial sources of input. Statistical Science, 9: 538–558.
    • (1994) Statistical Science , vol.9 , pp. 538-558
    • Meng, X.-L.1
  • 53
    • 0001986642 scopus 로고    scopus 로고
    • The analysis of longitudinal ordinal data with nonrandom dropout
    • Molenberghs, G., Kenward, M. G., and Lesaffre, E. (1997). The analysis of longitudinal ordinal data with nonrandom dropout. Biometrika, 84 (1): 33–44.
    • (1997) Biometrika , vol.84 , Issue.1 , pp. 33-44
    • Molenberghs, G.1    Kenward, M.G.2    Lesaffre, E.3
  • 58
    • 84857231864 scopus 로고    scopus 로고
    • The prevention and treatment of missing data in clinical trials: An fda perspective on the importance of dealing with it. clinical pharmacology and therapeutics
    • O’Neill, R. T., and Temple, R. (2012). The prevention and treatment of missing data in clinical trials: An FDA perspective on the importance of dealing with it. Clinical Pharmacology and Therapeutics. doi:10.1038/clpt.2011.340.
    • (2012) Doi:10.1038/Clpt.2011.340
    • O’Neill, R.T.1    Temple, R.2
  • 59
    • 68549120951 scopus 로고    scopus 로고
    • Dealing with the missing data challenge in clinical trials
    • Permutt T and Pinheiro J. (2009). Dealing with the missing data challenge in clinical trials. Drug Information Journal. 43: 403–408.
    • (2009) Drug Information Journal , vol.43 , pp. 403-408
    • Permutt, T.1    Pinheiro, J.2
  • 61
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some regressors are not always observed
    • Robins, J. M., Rotnizky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association, 89: 846–866.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 846-866
    • Robins, J.M.1    Rotnizky, A.2    Zhao, L.P.3
  • 62
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90: 106–121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 63
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3): 581–592.
    • (1976) Biometrika , vol.63 , Issue.3 , pp. 581-592
    • Rubin, D.B.1
  • 64
    • 0002608867 scopus 로고    scopus 로고
    • (1978). multiple imputations in sample surveys – a phenomenological bayesian approach to nonresponse
    • Washington, DC: U.S. Department of Commerce
    • Rubin, D. B. (1978). Multiple imputations in sample surveys – a phenomenological Bayesian approach to nonresponse. In Imputation and Editing of Faulty or Missing Survey Data. Washington, DC: U.S. Department of Commerce, pp. 1–23.
    • Imputation and Editing of Faulty Or Missing Survey Data , pp. 1-23
    • Rubin, D.B.1
  • 66
    • 0002373853 scopus 로고
    • Informative dropout in longitudinal data analysis
    • Rubin, D. B. (1994). Informative dropout in longitudinal data analysis. Applied Statistics, 43: 80–82.
    • (1994) Applied Statistics , vol.43 , pp. 80-82
    • Rubin, D.B.1
  • 67
    • 1642437553 scopus 로고    scopus 로고
    • SAS Institute Inc, Cary, NC: SAS Institute, Inc
    • SAS Institute Inc. (2003). SAS/STAT R® User’s Guide, Version 9.1, Cary, NC: SAS Institute, Inc.
    • (2003) R® User’s Guide, Version 9 , pp. 1
  • 68
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • Schafer, J. (2003). Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistics Neerlandica, 57: 19–35.
    • (2003) Statistics Neerlandica , vol.57 , pp. 19-35
    • Schafer, J.1
  • 70
    • 59049100877 scopus 로고    scopus 로고
    • Use of remote centralized raters via live 2-way video in a multi central clinical trial for schizophrenia
    • Shen, J., Kobak, K. A., Zhao, Y., Alexander, M., and Kane, J. (2008). Use of remote centralized raters via live 2-way video in a multi central clinical trial for schizophrenia. Journal of Clinical Psychopharmacology, 28 (6): 691–693.
    • (2008) Journal of Clinical Psychopharmacology , vol.28 , Issue.6 , pp. 691-693
    • Shen, J.1    Kobak, K.A.2    Zhao, Y.3    Alexander, M.4    Kane, J.5
  • 71
    • 60749108941 scopus 로고    scopus 로고
    • Mmrm vs. Locf: A comprehensive comparison based on simulation study and 25 nda datasets
    • Siddiqui, O., Hung, H. M., and O’Neill, R. O. (2009). MMRM vs. LOCF: A comprehensive comparison based on simulation study and 25 NDA datasets. Journal of Biopharmaceutical Statistics, 19 (2): 227–246.
    • (2009) Journal of Biopharmaceutical Statistics , vol.19 , Issue.2 , pp. 227-246
    • Siddiqui, O.1    Hung, H.M.2    O’Neill, R.O.3
  • 73
    • 24644466557 scopus 로고    scopus 로고
    • Enrichment designs: Efficiency in development of cancer treatments
    • Temple, R. (2005). Enrichment designs: Efficiency in development of cancer treatments. Journal of Clinical Oncology, 23 (22): 4838–4839.
    • (2005) Journal of Clinical Oncology , vol.23 , Issue.22 , pp. 4838-4839
    • Temple, R.1
  • 74
    • 84925647700 scopus 로고    scopus 로고
    • Teshome, B., Lipkovich, I., Molenberghs, G., and Mallinckrodt, C. (forthcoming). A multiple imputation based approach to sensitivity analyses and effectiveness assessments in longitudinal clinical trials.Journal of Biopharmacological Statistics
    • Teshome, B., Lipkovich, I., Molenberghs, G., and Mallinckrodt, C. (forthcoming). A multiple imputation based approach to sensitivity analyses and effectiveness assessments in longitudinal clinical trials. Journal of Biopharmacological Statistics.
  • 76
    • 0034557672 scopus 로고    scopus 로고
    • The milk protein trial: Influence analysis of the dropout process
    • Thijs, H., Molenberghs, G., and Verbeke G. (2000). The milk protein trial: Influence analysis of the dropout process. Biomedical Journal, 42 (5): 617–646.
    • (2000) Biomedical Journal , vol.42 , Issue.5 , pp. 617-646
    • Thijs, H.1    Molenberghs, G.2    Verbeke, G.3
  • 77
    • 12344335515 scopus 로고    scopus 로고
    • An index of local sensitivity to nonignorability
    • Troxel, A. B., Ma, G., and Heitjan, D. F. (2004). An index of local sensitivity to nonignorability. Statistica Sinica, 14: 1221–1237.
    • (2004) Statistica Sinica , vol.14 , pp. 1221-1237
    • Troxel, A.B.1    Ma, G.2    Heitjan, D.F.3
  • 80
    • 0035102436 scopus 로고    scopus 로고
    • Sensitivity analysis for nonrandom dropout: A local influence approach
    • Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E., and Kenward, M. G. (2001). Sensitivity analysis for nonrandom dropout: a local influence approach. Biometrics, 57 (1): 7–14.
    • (2001) Biometrics , vol.57 , Issue.1 , pp. 7-14
    • Verbeke, G.1    Molenberghs, G.2    Thijs, H.3    Lesaffre, E.4    Kenward, M.G.5
  • 82
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu, M. C., and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44: 175–188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2
  • 83
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model
    • Wu, M. C., and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics, 45 (3): 939–955.
    • (1989) Biometrics , vol.45 , Issue.3 , pp. 939-955
    • Wu, M.C.1    Bailey, K.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.