-
1
-
-
0003796630
-
-
Academic Press, New York
-
Adams, R. A. Sobolev spaces. Academic Press, New York, 1978.
-
(1978)
Sobolev spaces
-
-
Adams, R.A.1
-
2
-
-
0001861231
-
Mathematical existence of crystal growth with Gibbs-Thomson curvature effects
-
Almgren, F.; Wang, L. Mathematical existence of crystal growth with Gibbs-Thomson curvature effects. J. Geom. Anal. 10 (2000), no. 1, 1-100. doi: 10.1007/BF02921806
-
(2000)
J. Geom. Anal.
, vol.10
, Issue.1
, pp. 1-100
-
-
Almgren, F.1
Wang, L.2
-
3
-
-
0001055847
-
Regularity of the free boundary in parabolic phase-transition problems
-
Athanasopoulos, I.; Caffarelli, L.; Salsa, S. Regularity of the free boundary in parabolic phase-transition problems. Acta Math. 176 (1996), no. 2, 245-282. doi: 10.1007/BF02551583
-
(1996)
Acta Math.
, vol.176
, Issue.2
, pp. 245-282
-
-
Athanasopoulos, I.1
Caffarelli, L.2
Salsa, S.3
-
4
-
-
0040117095
-
Phase transition problems of parabolic type: flat free boundaries are smooth
-
1<77::AID-CPA4>3.0.CO;2-C
-
Athanasopoulos, I.; Caffarelli, L. A.; Salsa, S. Phase transition problems of parabolic type: flat free boundaries are smooth. Comm. Pure Appl. Math. 51 (1998), no. 1, 77-112. doi: 10.1002/(SICI)1097-0312(199801)51:1<77::AID-CPA4>3.0.CO;2-C
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.1
, pp. 77-112
-
-
Athanasopoulos, I.1
Caffarelli, L.A.2
Salsa, S.3
-
5
-
-
0000409224
-
The regularity of free boundaries in higher dimensions
-
Caffarelli, L. A. The regularity of free boundaries in higher dimensions. Acta Math. 139 (1977), no. 3-4, 155-184. doi: 10.1007/BF02392236
-
(1977)
Acta Math.
, vol.139
, Issue.3-4
, pp. 155-184
-
-
Caffarelli, L.A.1
-
6
-
-
0042295929
-
Some aspects of the one-phase Stefan problem
-
Caffarelli, L. A. Some aspects of the one-phase Stefan problem. Indiana Univ. Math. J. 27 (1978), no. 1, 73-77. doi: 10.1512/iumj.1978.27.27006
-
(1978)
Indiana Univ. Math. J.
, vol.27
, Issue.1
, pp. 73-77
-
-
Caffarelli, L.A.1
-
7
-
-
0020549958
-
Continuity of the temperature in the two-phase Stefan problem
-
Caffarelli, L. A.; Evans, L. C. Continuity of the temperature in the two-phase Stefan problem. Arch. Rational Mech. Anal. 81 (1983), no. 3, 199-220. doi: 10.1007/BF00250800
-
(1983)
Arch. Rational Mech. Anal.
, vol.81
, Issue.3
, pp. 199-220
-
-
Caffarelli, L.A.1
Evans, L.C.2
-
8
-
-
0042295981
-
Continuity of the temperature in the Stefan problem
-
Caffarelli, L. A.; Friedman, A. Continuity of the temperature in the Stefan problem. Indiana Univ. Math. J. 28 (1979), no. 1, 53-70. doi: 10.1512/iumj.1979.28.28004
-
(1979)
Indiana Univ. Math. J.
, vol.28
, Issue.1
, pp. 53-70
-
-
Caffarelli, L.A.1
Friedman, A.2
-
9
-
-
33751340438
-
-
Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, R.I.
-
Caffarelli, L. A.; Salsa, S. A geometric approach to free boundary problems. Graduate Studies in Mathematics, 68. American Mathematical Society, Providence, R.I., 2005.
-
(2005)
A geometric approach to free boundary problems
-
-
Caffarelli, L.A.1
Salsa, S.2
-
10
-
-
84925449253
-
Some recent results on the Muskat problem
-
Exp. No. 5, Available at:
-
Castro, A.; Córdoba, D.; Gancedo, F. Some recent results on the Muskat problem. Journées équations aux dérivées partielles, Exp. No. 5, 14 pp. Available at: http://jedp.cedram.org/jedp-bin/item?id=JEDP_2010____A5_0
-
Journées équations aux dérivées partielles
, pp. 14
-
-
Castro, A.1
Córdoba, D.2
Gancedo, F.3
-
11
-
-
78650916026
-
Regularity of one-phase Stefan problem near Lipschitz initial data
-
Choi, S; Kim, I. C. Regularity of one-phase Stefan problem near Lipschitz initial data. Amer. J. Math. 132 (2010), no. 6, 1693-1727.
-
(2010)
Amer. J. Math.
, vol.132
, Issue.6
, pp. 1693-1727
-
-
Choi, S.1
Kim, I.C.2
-
12
-
-
84870705750
-
On the global existence for the Muskat problem
-
Constantin, P.; Córdoba, D.; Gancedo, F.; Strain, R. M. On the global existence for the Muskat problem. J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 201-227. doi: 10.4171/JEMS/360
-
(2013)
J. Eur. Math. Soc. (JEMS)
, vol.15
, Issue.1
, pp. 201-227
-
-
Constantin, P.1
Córdoba, D.2
Gancedo, F.3
Strain, R.M.4
-
13
-
-
78751624212
-
Interface evolution: the Hele-Shaw and Muskat problems
-
Córdoba, A.; Córdoba, D.; Gancedo, F. Interface evolution: the Hele-Shaw and Muskat problems. Ann. of Math. (2) 173 (2011), no. 1, 477-542. doi: 10.4007/annals.2011.173.1.10
-
(2011)
Ann. of Math. (2)
, vol.173
, Issue.1
, pp. 477-542
-
-
Córdoba, A.1
Córdoba, D.2
Gancedo, F.3
-
15
-
-
84892619222
-
Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit
-
Coutand, D.; Hole, J.; Shkoller, S. Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45 (2013), no. 6, 3690-3767. doi: 10.1137/120888697
-
(2013)
SIAM J. Math. Anal.
, vol.45
, Issue.6
, pp. 3690-3767
-
-
Coutand, D.1
Hole, J.2
Shkoller, S.3
-
16
-
-
34548446988
-
Well-posedness of the free-surface incompressible Euler equations with or without surface tension
-
Coutand, D.; Shkoller, S. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Amer. Math. Soc. 20 (2007), no. 3, 829-930. doi: 10.1090/S0894-0347-07-00556-5
-
(2007)
J. Amer. Math. Soc.
, vol.20
, Issue.3
, pp. 829-930
-
-
Coutand, D.1
Shkoller, S.2
-
17
-
-
84864603441
-
A simple proof of well-posedness for the free-surface incompressible Euler equations
-
Coutand, D.; Shkoller, S. A simple proof of well-posedness for the free-surface incompressible Euler equations. Discrete Contin. Dyn. Syst. Ser. S 3 (2010), no. 3, 429-449. doi: 10.3934/dcdss.2010.3.429
-
(2010)
Discrete Contin. Dyn. Syst. Ser. S
, vol.3
, Issue.3
, pp. 429-449
-
-
Coutand, D.1
Shkoller, S.2
-
18
-
-
84870334285
-
Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum
-
Coutand, D.; Shkoller, S. Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum. Arch. Ration. Mech. Anal. 206 (2012), no. 2, 515-616. doi: 10.1007/s00205-012-0536-1
-
(2012)
Arch. Ration. Mech. Anal.
, vol.206
, Issue.2
, pp. 515-616
-
-
Coutand, D.1
Shkoller, S.2
-
19
-
-
1642320714
-
All time smooth solutions of the one-phase Stefan problem and the Hele-Shaw flow
-
Daskalopoulos, P.; Lee, K.-A. All time smooth solutions of the one-phase Stefan problem and the Hele-Shaw flow. Comm. Partial Differential Equations 29 (2004), no. 1-2, 71-89. doi: 10.1081/PDE-120028844
-
(2004)
Comm. Partial Differential Equations
, vol.29
, Issue.1-2
, pp. 71-89
-
-
Daskalopoulos, P.1
Lee, K.-A.2
-
20
-
-
0242338686
-
Analytic solutions for a Stefan problem with Gibbs-Thomson correction
-
Escher, J.; Pröss, J.; Simonett, G. Analytic solutions for a Stefan problem with Gibbs-Thomson correction. J. Reine Angew. Math. 563 (2003), 1-52. doi: 10.1515/crll.2003.082
-
(2003)
J. Reine Angew. Math.
, vol.563
, pp. 1-52
-
-
Escher, J.1
Pröss, J.2
Simonett, G.3
-
22
-
-
84968481497
-
The Stefan problem in several space variables
-
Friedman, A. The Stefan problem in several space variables. Trans. Amer. Math. Soc. 133 (1968), 51-87. doi: 10.2307/1994932
-
(1968)
Trans. Amer. Math. Soc.
, vol.133
, pp. 51-87
-
-
Friedman, A.1
-
24
-
-
0016557040
-
A one phase Stefan problem
-
Friedman, A.; Kinderlehrer, D. A one phase Stefan problem. Indiana Univ. Math. J. 24 (1974/75), no. 11, 1005-1035. doi: 10.1512/iumj.1975.24.24086
-
(1974)
Indiana Univ. Math. J.
, vol.24
, Issue.11
, pp. 1005-1035
-
-
Friedman, A.1
Kinderlehrer, D.2
-
25
-
-
84966227798
-
The Stefan problem with small surface tension
-
Friedman, A.; Reitich, F. The Stefan problem with small surface tension. Trans. Amer. Math. Soc. 328 (1991), no. 2, 465-515. doi: 10.2307/2001792
-
(1991)
Trans. Amer. Math. Soc.
, vol.328
, Issue.2
, pp. 465-515
-
-
Friedman, A.1
Reitich, F.2
-
26
-
-
84856727335
-
Orthogonality conditions and asymptotic stability in the Stefan problem with surface tension
-
Hadžić, M. Orthogonality conditions and asymptotic stability in the Stefan problem with surface tension. Arch. Ration. Mech. Anal. 203 (2012), no. 3, 719-745. doi: 10.1007/s00205-011-0463-6
-
(2012)
Arch. Ration. Mech. Anal.
, vol.203
, Issue.3
, pp. 719-745
-
-
Hadžić, M.1
-
27
-
-
77950944473
-
Stability in the Stefan problem with surface tension (I)
-
Hadžić, M.; Guo, Y. Stability in the Stefan problem with surface tension (I). Comm. Partial Differential Equations 35 (2010), no. 2, 201-244. doi: 10.1080/03605300903405972
-
(2010)
Comm. Partial Differential Equations
, vol.35
, Issue.2
, pp. 201-244
-
-
Hadžić, M.1
Guo, Y.2
-
28
-
-
84925436399
-
-
Well-posedness for the classical Stefan problem and the vanishing surface tension limit. Preprint, 1112.5817 [math.AP]
-
Hadžić, M.; Shkoller, S. Well-posedness for the classical Stefan problem and the vanishing surface tension limit. Preprint, 2011. 1112.5817 [math.AP]
-
(2011)
-
-
Hadžić, M.1
Shkoller, S.2
-
29
-
-
84972561749
-
Classical solutions of the Stefan problem
-
Hanzawa, E. I. Classical solutions of the Stefan problem. Tôhoku Math. J. (2) 33 (1981), no. 3, 297-335. doi: 10.2748/tmj/1178229399
-
(1981)
Tôhoku Math. J. (2)
, vol.33
, Issue.3
, pp. 297-335
-
-
Hanzawa, E.I.1
-
30
-
-
80054754274
-
Logarithmic fluctuations for internal DLA
-
Jerison, D.; Levine, L.; Sheffield, S. Logarithmic fluctuations for internal DLA. J. Amer. Math. Soc. 25 (2012), no. 1, 271-301. doi: 10.1090/S0894-0347-2011-00716-9
-
(2012)
J. Amer. Math. Soc.
, vol.25
, Issue.1
, pp. 271-301
-
-
Jerison, D.1
Levine, L.2
Sheffield, S.3
-
31
-
-
0000608193
-
On Stefan's problem
-
Kamenomostskaja, S. L. On Stefan's problem. Mat. Sb. (N.S.) 53 (95) (1961), 489-514.
-
(1961)
Mat. Sb. (N.S.)
, vol.53
, Issue.95
, pp. 489-514
-
-
Kamenomostskaja, S.L.1
-
32
-
-
0043245213
-
Uniqueness and existence results on the Hele-Shaw and the Stefan problems
-
Kim, I. C. Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168 (2003), no. 4, 299-328. doi: 10.1007/s00205-003-0251-z
-
(2003)
Arch. Ration. Mech. Anal.
, vol.168
, Issue.4
, pp. 299-328
-
-
Kim, I.C.1
-
33
-
-
78649488616
-
Viscosity solutions for the two-phase Stefan problem
-
Kim, I. C.; Požar, N. Viscosity solutions for the two-phase Stefan problem. Comm. Partial Differential Equations 36 (2011), no. 1, 42-66. doi: 10.1080/03605302.2010.526980
-
(2011)
Comm. Partial Differential Equations
, vol.36
, Issue.1
, pp. 42-66
-
-
Kim, I.C.1
Požar, N.2
-
35
-
-
84980156672
-
The smoothness of the free boundary in the one phase Stefan problem
-
Kinderlehrer, D.; Nirenberg, L. The smoothness of the free boundary in the one phase Stefan problem. Comm. Pure Appl. Math. 31 (1978), no. 3, 257-282. doi: 10.1002/cpa.3160310302
-
(1978)
Comm. Pure Appl. Math.
, vol.31
, Issue.3
, pp. 257-282
-
-
Kinderlehrer, D.1
Nirenberg, L.2
-
36
-
-
0346934116
-
Classical solutions to phase transition problems are smooth
-
Koch, H. Classical solutions to phase transition problems are smooth. Comm. Partial Differential Equations 23 (1998), no. 3-4, 389-437. doi: 10.1080/03605309808821351
-
(1998)
Comm. Partial Differential Equations
, vol.23
, Issue.3-4
, pp. 389-437
-
-
Koch, H.1
-
37
-
-
0003690985
-
-
Translations of Mathematical Monographs, 23. American Mathematical Society, Providence, R. I.
-
Ladyženskaja, O. A.; Solonnikov, V. A.; Uralceva, N. N. Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, 23. American Mathematical Society, Providence, R. I., 1968.
-
(1968)
Linear and quasilinear equations of parabolic type
-
-
Ladyženskaja, O.A.1
Solonnikov, V.A.2
Uralceva, N.N.3
-
38
-
-
84971922508
-
Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature
-
Luckhaus, S. Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature. European J. Appl. Math. 1 (1990), no. 2, 101-111. doi: 10.1017/S0956792500000103
-
(1990)
European J. Appl. Math.
, vol.1
, Issue.2
, pp. 101-111
-
-
Luckhaus, S.1
-
39
-
-
0003892889
-
-
de Gruyter Expositions in Mathematics, 3. Walter de Gruyter, Berlin
-
Meirmanov, A. M. The Stefan problem. de Gruyter Expositions in Mathematics, 3. Walter de Gruyter, Berlin, 1992. doi: 10.1515/9783110846720.245
-
(1992)
The Stefan problem
-
-
Meirmanov, A.M.1
-
40
-
-
84972580844
-
On the rate of decay of solutions of parabolic differential equations
-
Oddson, J. K. On the rate of decay of solutions of parabolic differential equations. Pacific J. Math. 29 (1969), 389-396.
-
(1969)
Pacific J. Math.
, vol.29
, pp. 389-396
-
-
Oddson, J.K.1
-
41
-
-
34249936488
-
Existence of analytic solutions for the classical Stefan problem
-
Prüss, J.; Saal, J.; Simonett, G. Existence of analytic solutions for the classical Stefan problem. Math. Ann. 338 (2007), no. 3, 703-755. doi: 10.1007/s00208-007-0094-2
-
(2007)
Math. Ann.
, vol.338
, Issue.3
, pp. 703-755
-
-
Prüss, J.1
Saal, J.2
Simonett, G.3
-
42
-
-
84872192587
-
Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension
-
Prüss, J.; Simonett, G.; Zacher, R. Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension. Arch. Ration. Mech. Anal. 207 (2013), no. 2, 611-667. doi: 10.1007/s00205-012-0571-y
-
(2013)
Arch. Ration. Mech. Anal.
, vol.207
, Issue.2
, pp. 611-667
-
-
Prüss, J.1
Simonett, G.2
Zacher, R.3
-
43
-
-
23044524517
-
Asymptotic convergence of the Stefan problem to Hele-Shaw
-
Quirós, F.; Vázquez, J. L. Asymptotic convergence of the Stefan problem to Hele-Shaw. Trans. Amer. Math. Soc. 353 (2001), no. 2, 609-634 (electronic). doi: 10.1090/S0002-9947-00-02739-2
-
(2001)
Trans. Amer. Math. Soc.
, vol.353
, Issue.2
, pp. 609-634
-
-
Quirós, F.1
Vázquez, J.L.2
-
44
-
-
0001427453
-
The Gibbs-Thompson correction and conditions for the existence of a classical solution of the modified Stefan problem
-
1311-1315, 1991, translation in Soviet Math. Dokl. 43 (1991), no. 1, 274-278.
-
Radkevich, E. V. The Gibbs-Thompson correction and conditions for the existence of a classical solution of the modified Stefan problem. Dokl. Akad. Nauk SSSR 316 (1991), no. 6, 1311-1315; translation in Soviet Math. Dokl. 43 (1991), no. 1, 274-278.
-
Dokl. Akad. Nauk SSSR 316
, vol.43
, Issue.1
, pp. 274-278
-
-
Radkevich, E.V.1
-
45
-
-
45749106469
-
On the instability of jets
-
s1-10
-
Rayleigh, L. On the instability of jets. Proc. London Math. Soc. s1-10 (1878), no. 1, 4-13. doi: 10.1112/plms/s1-10.1.4
-
(1878)
Proc. London Math. Soc.
, Issue.1
, pp. 4-13
-
-
Rayleigh, L.1
-
46
-
-
1642380895
-
Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation
-
Röger, M. Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation. Interfaces Free Bound. 6 (2004), no. 1, 105-133. doi: 10.4171/IFB/93
-
(2004)
Interfaces Free Bound.
, vol.6
, Issue.1
, pp. 105-133
-
-
Röger, M.1
-
48
-
-
0002418219
-
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
-
Taylor, G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. Roy. Soc. London. Ser. A. 201 (1950), 192-196. doi: 10.1098/rspa.1950.0052
-
(1950)
Proc. Roy. Soc. London. Ser. A.
, vol.201
, pp. 192-196
-
-
Taylor, G.1
-
49
-
-
66149102375
-
Introduction to Stefan-type problems
-
Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam,
-
Visintin, A. Introduction to Stefan-type problems. Handbook of differential equations: evolutionary equations. Vol. IV, 377-484. Handbook of Differential Equations, Elsevier/North-Holland, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00008-X
-
(2008)
Handbook of differential equations: evolutionary equations
, vol.4
, pp. 377-484
-
-
Visintin, A.1
-
50
-
-
0031506263
-
Well-posedness in Sobolev spaces of the full water wave problem in 2-D
-
Wu, S. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997), no. 1, 39-72. doi: 10.1007/s002220050177
-
(1997)
Invent. Math.
, vol.130
, Issue.1
, pp. 39-72
-
-
Wu, S.1
|