메뉴 건너뛰기




Volumn 35, Issue 2, 2010, Pages 201-244

Stability in the Stefan problem with surface tension (i)

Author keywords

Energy method; Free boundary; Phase transition; Stefan problem; Surface tension

Indexed keywords


EID: 77950944473     PISSN: 03605302     EISSN: 15324133     Source Type: Journal    
DOI: 10.1080/03605300903405972     Document Type: Article
Times cited : (21)

References (36)
  • 1
    • 0027559276 scopus 로고
    • Curvature-driven flows: A variational approach
    • Almgren, F., Taylor, J.E., Wang, L. (1993). Curvature-driven flows: A variational approach. SIAM J. Control Optim. 31:387-437.
    • (1993) SIAM J. Control Optim. , vol.31 , pp. 387-437
    • Almgren, F.1    Taylor, J.E.2    Wang, L.3
  • 2
    • 0001861231 scopus 로고    scopus 로고
    • Mathematical existence of crystal growth with Gibbs-Thomson curvature effects
    • Almgren, F., Wang, L. (2000). Mathematical existence of crystal growth with Gibbs-Thomson curvature effects. J. Geom. Anal. 10:1-100.
    • (2000) J. Geom. Anal. , vol.10 , pp. 1-100
    • Almgren, F.1    Wang, L.2
  • 3
    • 0001055847 scopus 로고    scopus 로고
    • Regularity of the free boundary in parabolic phasetransition problems
    • Athanasopoulos, I., Caffarelli, L.A., Salsa, S. (1996). Regularity of the free boundary in parabolic phasetransition problems. Acta Math. 176:245-282.
    • (1996) Acta Math. , vol.176 , pp. 245-282
    • Athanasopoulos, I.1    Caffarelli, L.A.2    Salsa, S.3
  • 4
    • 0040117095 scopus 로고    scopus 로고
    • Phase transition problems of parabolic type: Flat free boundaries are smooth
    • Athanasopoulos, I., Caffarelli, L.A., Salsa, S. (1998). Phase transition problems of parabolic type: Flat free boundaries are smooth. Comm. Pure Appl. Math. 51:77-112.
    • (1998) Comm. Pure Appl. Math. , vol.51 , pp. 77-112
    • Athanasopoulos, I.1    Caffarelli, L.A.2    Salsa, S.3
  • 5
    • 0020549958 scopus 로고
    • Continuity of the temperature in the two- phase Stefan problem
    • Caffarelli, L.A., Evans, L.C. (1983). Continuity of the temperature in the two- phase Stefan problem. Arch. Rat. Math. Anal. 81:199-220.
    • (1983) Arch. Rat. Math. Anal. , vol.81 , pp. 199-220
    • Caffarelli, L.A.1    Evans, L.C.2
  • 7
    • 21144479953 scopus 로고
    • The Hele-Shaw problem and area-preserving curve-shortening motions
    • Chen, X. (1993). The Hele-Shaw problem and area-preserving curve-shortening motions. Arch. Rat. Mech. Anal. 123:117-151.
    • (1993) Arch. Rat. Mech. Anal. , vol.123 , pp. 117-151
    • Chen, X.1
  • 8
    • 0001649885 scopus 로고    scopus 로고
    • Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem
    • Chen, X., Hong, J., Yi, F. (1996). Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem. Comm. Part. Diff. Equ. 21:1705-1727.
    • (1996) Comm. Part. Diff. Equ. , vol.21 , pp. 1705-1727
    • Chen, X.1    Hong, J.2    Yi, F.3
  • 9
    • 0001304426 scopus 로고
    • Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling
    • Chen, X., Reitich, F. (1992). Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling. J. Math. Anal. Appl. 164:350-362.
    • (1992) J. Math. Anal. Appl , vol.164 , pp. 350-362
    • Chen, X.1    Reitich, F.2
  • 10
    • 0000851461 scopus 로고
    • Global solutions for small data to the Hele Shaw problem
    • Constantin, P., Pugh, M. (1993). Global solutions for small data to the Hele Shaw problem. Nonlinearity 6:393-415.
    • (1993) Nonlinearity , vol.6 , pp. 393-415
    • Constantin, P.1    Pugh, M.2
  • 11
    • 0041794832 scopus 로고
    • Regularity properties of the solution of an n-dimensional two-phase Stefan problem
    • DiBenedetto, E. (1980). Regularity properties of the solution of an n-dimensional two-phase Stefan problem. Boll. Un. Mat. Ital. Suppl. 1:129-152.
    • (1980) Boll. Un. Mat. Ital. Suppl. , vol.1 , pp. 129-152
    • Dibenedetto, E.1
  • 12
    • 0000694313 scopus 로고
    • Évolution d'une interface par capillarité et diffusion de volume I. Existence locale en temps
    • Duchon, J., Robert, R. (1984). Évolution d'une interface par capillarité et diffusion de volume I. Existence locale en temps [Evolution of an interface by capillarity and volume diffusion I. Local-in-time existence]. Ann. Inst. H. Poincaré, Analyse non Linéaire 1:361-378.
    • (1984) Ann. Inst. H. Poincaré, Analyse Non Linéaire , vol.1 , pp. 361-378
    • Duchon, J.1    Robert, R.2
  • 13
    • 0242338686 scopus 로고    scopus 로고
    • Analytic solutions for a Stefan problem with Gibbs-Thomson correction
    • Escher, J., Prúss, J., Simonett, G. (2003). Analytic solutions for a Stefan problem with Gibbs-Thomson correction. J. Reine Angew. Math. 563:1-52.
    • (2003) J. Reine Angew. Math. , vol.563 , pp. 1-52
    • Escher, J.1    Prúss, J.2    Simonett, G.3
  • 14
    • 0000010015 scopus 로고    scopus 로고
    • Classical solutions to Hele-Shaw models with surface tension
    • Escher, J., Simonett, G. (1997). Classical solutions to Hele-Shaw models with surface tension. Adv. Diff. Equ. 2:619-642.
    • (1997) Adv. Diff. Equ. , vol.2 , pp. 619-642
    • Escher, J.1    Simonett, G.2
  • 15
    • 0001025274 scopus 로고    scopus 로고
    • A center manifold analysis for the Mullins-Sekerka model
    • Escher, J., Simonett, G. (1998). A center manifold analysis for the Mullins-Sekerka model. J. Differential Eqns. 143:267-292.
    • (1998) J. Differential Eqns. , vol.143 , pp. 267-292
    • Escher, J.1    Simonett, G.2
  • 16
    • 84968481497 scopus 로고
    • The Stefan problem in several space variables
    • Friedman, A. (1968). The Stefan problem in several space variables. Trans. Amer. Math. Soc. 133:51-87.
    • (1968) Trans. Amer. Math. Soc. , vol.133 , pp. 51-87
    • Friedman, A.1
  • 18
    • 84966227798 scopus 로고
    • The Stefan problem with small surface tension
    • Friedman, A., Reitich, F. (1991). The Stefan problem with small surface tension. Trans. Amer. Math. Soc. 328:465-515.
    • (1991) Trans. Amer. Math. Soc. , vol.328 , pp. 465-515
    • Friedman, A.1    Reitich, F.2
  • 19
    • 0000990726 scopus 로고    scopus 로고
    • Nonlinear stability of a quasi-static Stefan problem with surface tension: A continuation approach
    • Friedman, A., Reitich, F. (2001). Nonlinear stability of a quasi-static Stefan problem with surface tension: A continuation approach. Ann. Scuola Norm. Sup. Pisa - Cl. Scienze Sér. 4. 30:341-403.
    • (2001) Ann. Scuola Norm. Sup. Pisa - Cl. Scienze Sér , vol.4 , Issue.30 , pp. 341-403
    • Friedman, A.1    Reitich, F.2
  • 20
    • 1642323672 scopus 로고    scopus 로고
    • Dynamics near an unstable Kirchhoff ellipse
    • Guo, Y., Hallstrom, C., Spirn, D. (2004). Dynamics near an unstable Kirchhoff ellipse. Comm. Math. Physics 245:297-354.
    • (2004) Comm. Math. Physics , vol.245 , pp. 297-354
    • Guo, Y.1    Hallstrom, C.2    Spirn, D.3
  • 21
    • 84972561749 scopus 로고
    • Classical solutions of the Stefan problem
    • Hanzawa, E.I. (1981). Classical solutions of the Stefan problem. Tohoku Math. J. 33:297-335.
    • (1981) Tohoku Math. J. , vol.33 , pp. 297-335
    • Hanzawa, E.I.1
  • 27
    • 84971922508 scopus 로고
    • Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature
    • Luckhaus, S. (1990). Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature. Europ. J. Appl. Math. 1:101-111.
    • (1990) Europ. J. Appl. Math. , vol.1 , pp. 101-111
    • Luckhaus, S.1
  • 29
    • 0001265748 scopus 로고
    • On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
    • Meirmanov, A.M. (1980). On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Math. Sb. 112:170-192.
    • (1980) Math. Sb. , vol.112 , pp. 170-192
    • Meirmanov, A.M.1
  • 30
    • 63449132975 scopus 로고    scopus 로고
    • Stability of equilibria for the Stefan problem with surface tension
    • Prüss, J., Simonett, G. Stability of equilibria for the Stefan problem with surface tension. SIAM J. Math. Anal. 40:675-698.
    • SIAM J. Math. Anal. , vol.40 , pp. 675-698
    • Prüss, J.1    Simonett, G.2
  • 31
    • 0242276337 scopus 로고
    • Gibbs-Thomson law and existence of the classical solution of the modified Stefan problem
    • Radkevich, E.V. (1991). Gibbs-Thomson law and existence of the classical solution of the modified Stefan problem. Soviet Dokl. Acad. Sci. 316:1311-1315.
    • (1991) Soviet Dokl. Acad. Sci. , vol.316 , pp. 1311-1315
    • Radkevich, E.V.1
  • 32
    • 1642380895 scopus 로고    scopus 로고
    • Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation
    • Röger, M. (2004). Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation. Interfaces Free Bound 6:105-133.
    • (2004) Interfaces Free Bound , vol.6 , pp. 105-133
    • Röger, M.1
  • 33
    • 34249757566 scopus 로고
    • Convergence of the phase-field equations to the Mullins- Sekerka problem with a kinetic undercooling
    • Soner, M. (1995). Convergence of the phase-field equations to the Mullins- Sekerka problem with a kinetic undercooling. Arc. Rat. Mech. Anal. 131:139-197.
    • (1995) Arc. Rat. Mech. Anal. , vol.131 , pp. 139-197
    • Soner, M.1
  • 35
    • 0003768048 scopus 로고    scopus 로고
    • Progress in Nonlinear Differential Equations 28. Boston: Birkhauser
    • Visintin, A. (1996). Models of Phase Transitions. Progress in Nonlinear Differential Equations 28. Boston: Birkhauser.
    • (1996) Models of Phase Transitions
    • Visintin, A.1
  • 36
    • 66149102375 scopus 로고    scopus 로고
    • Introduction to Stefan-type problems
    • In: Dafermos, C.M., Pokorny, M., eds., Amsterdam: Elsevier
    • Visintin, A. (2008). Introduction to Stefan-type problems. In: Dafermos, C.M., Pokorny, M., eds. Handbook of Differential Equations: Evolutionary Equations, Vol. 4. Amsterdam: Elsevier, pp. 377-484.
    • (2008) Handbook of Differential Equations: Evolutionary Equations , vol.4 , pp. 377-484
    • Visintin, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.