메뉴 건너뛰기




Volumn 29, Issue 1-2, 2005, Pages 71-89

All Time Smooth Solutions of the One-Phase Stefan Problem and the Hele-Shaw Flow

Author keywords

Free boundary; Hele Shaw flows; Log concave; Stephan problem

Indexed keywords


EID: 1642320714     PISSN: 03605302     EISSN: None     Source Type: Journal    
DOI: 10.1081/pde-120028844     Document Type: Article
Times cited : (18)

References (12)
  • 1
    • 84963186061 scopus 로고
    • Convexity properties of solutions to some classical variational problems
    • Caffarelli, L. A., Spruk, J. (1982). Convexity properties of solutions to some classical variational problems. Comm. Partial Diff. Eq. 7(11):1337-1379.
    • (1982) Comm. Partial Diff. Eq. , vol.7 , Issue.11 , pp. 1337-1379
    • Caffarelli, L.A.1    Spruk, J.2
  • 2
    • 0036113466 scopus 로고    scopus 로고
    • Convexity and all time regularity of the interface in flame propagation
    • Daskalopoulos, P., Lee, K. (2002). Convexity and all time regularity of the interface in flame propagation. Comm. Pure Appl. Math. 55(5):633-653.
    • (2002) Comm. Pure Appl. Math. , vol.55 , Issue.5 , pp. 633-653
    • Daskalopoulos, P.1    Lee, K.2
  • 3
    • 0038340250 scopus 로고    scopus 로고
    • infin;-regularity of interface in degenerated diffusion: A geometric approach
    • ∞-regularity of interface in degenerated diffusion: A geometric approach. Duke. Math. Journal 108(2):295-327.
    • (2001) Duke. Math. Journal , vol.108 , Issue.2 , pp. 295-327
    • Daskalopoulos, P.1    Hamilton, R.2    Lee, K.3
  • 4
    • 84971155357 scopus 로고
    • A variational inequality approach to Hele-Shaw flow with a moving boundary
    • Elliott, C. M., Janovsky, V. (1981). A variational inequality approach to Hele-Shaw flow with a moving boundary. Proc. Roy. Soc. Edinburgh. Sec. A. 88(1-2): 93-107.
    • (1981) Proc. Roy. Soc. Edinburgh. Sec. A. , vol.88 , Issue.1-2 , pp. 93-107
    • Elliott, C.M.1    Janovsky, V.2
  • 5
    • 0031478022 scopus 로고    scopus 로고
    • Classical solutions of multidimensional to Hele-Shaw models
    • Escher, J., Simonett, G. (1997). Classical solutions of multidimensional to Hele-Shaw models. SIAM J. Math. Anal 28(5): 1028-1047.
    • (1997) SIAM J. Math. Anal , vol.28 , Issue.5 , pp. 1028-1047
    • Escher, J.1    Simonett, G.2
  • 6
    • 84968481497 scopus 로고
    • The Stefan problem in several space variables
    • Friedman, A. (1968). The Stefan problem in several space variables. Trans. Amer. Math. Soc. 1333:51-87.
    • (1968) Trans. Amer. Math. Soc. , vol.1333 , pp. 51-87
    • Friedman, A.1
  • 7
    • 84972561749 scopus 로고
    • Classical solutions of the Stefan problems
    • Hanzawa, E. I. (1981). Classical solutions of the Stefan problems. Tohoku Math. J. 33:297-335.
    • (1981) Tohoku Math. J. , vol.33 , pp. 297-335
    • Hanzawa, E.I.1
  • 8
    • 0000608193 scopus 로고
    • On Stefan's probelm (in Russian)
    • Kamenomostskaja, S. L. (1961). On Stefan's probelm (in Russian). Mat. Sb. 53:489-514.
    • (1961) Mat. Sb. , vol.3 , pp. 489-514
    • Kamenomostskaja, S.L.1
  • 10
    • 1642280823 scopus 로고
    • Hodograph methods and the smoothness of the free boundary in the one phase Stefan problem
    • Wilson, D. G., Solomon, A. D., Boggs, P. T., eds. Academic Press Inc.
    • Kinderlehrer, D., Nirenberg, L. (1978). Hodograph methods and the smoothness of the free boundary in the one phase Stefan problem. In: Wilson, D. G., Solomon, A. D., Boggs, P. T., eds. Moving Boundary Problems. Academic Press Inc., pp. 57-69.
    • (1978) Moving Boundary Problems , pp. 57-69
    • Kinderlehrer, D.1    Nirenberg, L.2
  • 11
    • 0001488410 scopus 로고
    • On the classical solution of the multidimensional Stefan problems for quasilinear parabolic equations
    • Meiramanov, A. M. (1981). On the classical solution of the multidimensional Stefan problems for quasilinear parabolic equations. Math. USSR Sbormik 40(2): 157-178.
    • (1981) Math. USSR Sbormik , vol.40 , Issue.2 , pp. 157-178
    • Meiramanov, A.M.1
  • 12
    • 0000859294 scopus 로고
    • A method of solution of the general Stefan problem
    • Oleinik, A. (1960). A method of solution of the general Stefan problem. Soviet Math. Dokl. 1:1350-1354.
    • (1960) Soviet Math. Dokl. , vol.1 , pp. 1350-1354
    • Oleinik, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.