-
2
-
-
0030536801
-
Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems
-
I. Athanasopoulos, L. Caffarelli and S. Salsa. Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Ann. of Math. (2),143(3), 1996:413-434.
-
(1996)
Ann. of Math. (2)
, vol.143
, Issue.3
, pp. 413-434
-
-
Athanasopoulos, I.1
Caffarelli, L.2
Salsa, S.3
-
3
-
-
0001055847
-
Regularity of the free boundary in parabolic phase transition problems
-
I. Athanasopoulos, L. Caffarelli and S. Salsa. Regularity of the free boundary in parabolic phase transition problems. Acta Math.,176(2), 1996:245-282.
-
(1996)
Acta Math.
, vol.176
, Issue.2
, pp. 245-282
-
-
Athanasopoulos, I.1
Caffarelli, L.2
Salsa, S.3
-
5
-
-
0348151525
-
Solutions in a weighted Hölder function space of the multidimensional two-phase Stefan and Florin problem for a second order parabolic equation in a bounded domain
-
G. I. Bizhanova. Solutions in a weighted Hölder function space of the multidimensional two-phase Stefan and Florin problem for a second order parabolic equation in a bounded domain. St. Petersburg Math. J., 7(2), 1996:217-241.
-
(1996)
St. Petersburg Math. J.
, vol.7
, Issue.2
, pp. 217-241
-
-
Bizhanova, G.I.1
-
6
-
-
0348151530
-
On the solvability of the initial boundary value problem for a parabolic equation of second order with dynamic boundary condition in weighted Hölder spaces
-
G. I. Bizhanova and V. A. Solonnikov. On the solvability of the initial boundary value problem for a parabolic equation of second order with dynamic boundary condition in weighted Hölder spaces. St. Petersburg Math. J., 5, 1994:97-124.
-
(1994)
St. Petersburg Math. J.
, vol.5
, pp. 97-124
-
-
Bizhanova, G.I.1
Solonnikov, V.A.2
-
7
-
-
84985362766
-
Regular elliptic boundary value problems in Besov-Triebel-Lizorkin spaces
-
J. Franke and T. Runst. Regular elliptic boundary value problems in Besov-Triebel-Lizorkin spaces. Math. Nachr., 174, 1995:113-149.
-
(1995)
Math. Nachr.
, vol.174
, pp. 113-149
-
-
Franke, J.1
Runst, T.2
-
8
-
-
85086813302
-
p estimates for solutions of model problems with time derivative in the boundary condition
-
To appear
-
p estimates for solutions of model problems with time derivative in the boundary condition. Izvestija St. Petersburg Electrotechn. Univ., 1996. To appear.
-
(1996)
Izvestija St. Petersburg Electrotechn. Univ.
-
-
Frolova, E.1
-
9
-
-
0009106530
-
Espace intermédiaires entre éspaces de Sobolev avec poids
-
P. Grisvard. Espace intermédiaires entre éspaces de Sobolev avec poids. Ann. Scuola Norm. Sup. Pisa, 17, 1963:255-296.
-
(1963)
Ann. Scuola Norm. Sup. Pisa
, vol.17
, pp. 255-296
-
-
Grisvard, P.1
-
10
-
-
51249167631
-
p Sobolev spaces
-
p Sobolev spaces. Math. Z.,218(1), 1995:1013-1046.
-
(1995)
Math. Z.
, vol.218
, Issue.1
, pp. 1013-1046
-
-
Grubb, G.1
-
11
-
-
84972561749
-
Classical solution of the two-phase Stefan problem
-
E.I. Hanzawa. Classical solution of the two-phase Stefan problem. Tôhoka Math. J. (2), 33, 1981:297-335.
-
(1981)
Tôhoka Math. J. (2)
, vol.33
, pp. 297-335
-
-
Hanzawa, E.I.1
-
12
-
-
84980186248
-
Analyticity at the boundary of solutions of nonlinear second-order parabolic equations
-
D. Kinderlehrer and L. Nirenberg. Analyticity at the boundary of solutions of nonlinear second-order parabolic equations. Comm. Pure Appl. Math.,31, 1978:282-338.
-
(1978)
Comm. Pure Appl. Math.
, vol.31
, pp. 282-338
-
-
Kinderlehrer, D.1
Nirenberg, L.2
-
15
-
-
0005688260
-
-
Engl. trans.
-
p. Trudy Mat. Inst. Steklov, 89, 1967:269-290. Engl. trans. in Proc. Stoklov Inst. Math. 89, 1967: 269-290.
-
(1967)
Proc. Stoklov Inst. Math.
, vol.89
, pp. 269-290
-
-
-
16
-
-
0001265748
-
The classical solution of the multidimensional Stefan problem for quasilinear parabolic equations
-
A. M. Meirmanov. The classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Math. USSR-Sb., 112(2), 1980:170-192.
-
(1980)
Math. USSR-Sb.
, vol.112
, Issue.2
, pp. 170-192
-
-
Meirmanov, A.M.1
-
19
-
-
0012900098
-
1 , 1 in spaces of Besov and Triebel-Lizorkin type
-
1 , 1 in spaces of Besov and Triebel-Lizorkin type. Ann. Global Anal. Geom.,3, 1985:13-28.
-
(1985)
Ann. Global Anal. Geom.
, vol.3
, pp. 13-28
-
-
Runst, T.1
|