메뉴 건너뛰기




Volumn 2015, Issue , 2015, Pages

Prediction of concrete compressive strength by evolutionary artificial neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CEMENTS; CONCRETES; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS; LINEAR REGRESSION; NEURAL NETWORKS; SAND; STRENGTH OF MATERIALS;

EID: 84925400441     PISSN: 16878434     EISSN: 16878442     Source Type: Journal    
DOI: 10.1155/2015/849126     Document Type: Article
Times cited : (160)

References (25)
  • 1
    • 0037653583 scopus 로고    scopus 로고
    • Prediction of concrete strength using artificial neural networks
    • S.-C. Lee, "Prediction of concrete strength using artificial neural networks, " Engineering Structures, vol. 25, no. 7, pp. 849-857, 2003.
    • (2003) Engineering Structures , vol.25 , Issue.7 , pp. 849-857
    • Lee, S.-C.1
  • 2
    • 79953730262 scopus 로고    scopus 로고
    • Prediction of the strength of mineral admixture concrete usingmultivariable regression analysis and an artificial neural network
    • U. Atici, "Prediction of the strength of mineral admixture concrete usingmultivariable regression analysis and an artificial neural network, " Expert Systems with Applications, vol. 38, no. 8, pp. 9609-9618, 2011.
    • (2011) Expert Systems with Applications , vol.38 , Issue.8 , pp. 9609-9618
    • Atici, U.1
  • 3
    • 37249005831 scopus 로고    scopus 로고
    • Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
    • I. B. Topcu and M. Saridemir, "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic, " ComputationalMaterials Science, vol. 41, no. 3, pp. 305-311, 2008.
    • (2008) ComputationalMaterials Science , vol.41 , Issue.3 , pp. 305-311
    • Topcu, I.B.1    Saridemir, M.2
  • 4
    • 0036646306 scopus 로고    scopus 로고
    • Neural network based methodology for estimating bridge damage after major earthquakes
    • T.-K. Lin, C.-C. J. Lin, and K.-C. Chang, "Neural network based methodology for estimating bridge damage after major earthquakes, " Journal of the Chinese Institute of Engineers, vol. 25, no. 5, pp. 415-424, 2002.
    • (2002) Journal of the Chinese Institute of Engineers , vol.25 , Issue.5 , pp. 415-424
    • Lin, T.-K.1    Lin, C.-C.J.2    Chang, K.-C.3
  • 5
    • 33646926510 scopus 로고    scopus 로고
    • Predicting the compressive strength and slump of high strength concrete using neural network
    • A. Oztas, M. Pala, E. Ozbay, E. Kanca, N. Caglar, and M. A. Bhatti, "Predicting the compressive strength and slump of high strength concrete using neural network, " Construction and Building Materials, vol. 20, no. 9, pp. 769-775, 2006.
    • (2006) Construction and Building Materials , vol.20 , Issue.9 , pp. 769-775
    • Oztas, A.1    Pala, M.2    Ozbay, E.3    Kanca, E.4    Caglar, N.5    Bhatti, M.A.6
  • 6
    • 33644678621 scopus 로고    scopus 로고
    • Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks
    • M. A. Kewalramani and R. Gupta, "Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks, " Automation in Construction, vol. 15, no. 3, pp. 374-379, 2006.
    • (2006) Automation in Construction , vol.15 , Issue.3 , pp. 374-379
    • Kewalramani, M.A.1    Gupta, R.2
  • 7
    • 84855172966 scopus 로고    scopus 로고
    • A neural network approach for compressive strength prediction in cement-based materials through the study of pressurestimulated electrical signals
    • A. Alexandridis, D. Triantis, I. Stavrakas, and C. Stergiopoulos, "A neural network approach for compressive strength prediction in cement-based materials through the study of pressurestimulated electrical signals, " Construction and Building Materials, vol. 30, pp. 294-300, 2012.
    • (2012) Construction and Building Materials , vol.30 , pp. 294-300
    • Alexandridis, A.1    Triantis, D.2    Stavrakas, I.3    Stergiopoulos, C.4
  • 8
    • 32644434976 scopus 로고    scopus 로고
    • Methodology of neural identification of strength of concrete
    • J. Hola and K. Schabowicz, "Methodology of neural identification of strength of concrete, " ACIMaterials Journal, vol. 102, no. 6, pp. 459-464, 2005.
    • (2005) ACIMaterials Journal , vol.102 , Issue.6 , pp. 459-464
    • Hola, J.1    Schabowicz, K.2
  • 9
    • 57049177642 scopus 로고    scopus 로고
    • Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks
    • G. Trtnik, F. Kavcic, and G. Turk, "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks, " Ultrasonics, vol. 49, no. 1, pp. 53-60, 2009.
    • (2009) Ultrasonics , vol.49 , Issue.1 , pp. 53-60
    • Trtnik, G.1    Kavcic, F.2    Turk, G.3
  • 10
    • 79957591364 scopus 로고    scopus 로고
    • Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques
    • J.-S. Chou, C.-K. Chiu, M. Farfoura, and I. Al-Taharwa, "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques, " Journal of Computing in Civil Engineering, vol. 25, no. 3, pp. 242-253, 2011.
    • (2011) Journal of Computing in Civil Engineering , vol.25 , Issue.3 , pp. 242-253
    • Chou, J.-S.1    Chiu, C.-K.2    Farfoura, M.3    Al-Taharwa, I.4
  • 11
    • 84922291523 scopus 로고    scopus 로고
    • Principal component analysis combined with a self organization feature map to determine the pull-off adhesion between concrete layers
    • L. Sadowski, M. Nikoo, and M. Nikoo, Principal component analysis combined with a self organization feature map to determine the pull-off adhesion between concrete layers, Construction and Building Materials, vol. 78, pp. 386-396, 2015.
    • (2015) Construction and Building Materials , vol.78 , pp. 386-396
    • Sadowski, L.1    Nikoo, M.2    Nikoo, M.3
  • 12
    • 84921068437 scopus 로고    scopus 로고
    • Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm
    • L. Sadowski and M. Nikoo, "Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm, " Neural Computing and Applications, vol. 25, no. 7-8, pp. 1627-1638, 2014.
    • (2014) Neural Computing and Applications , vol.25 , Issue.7-8 , pp. 1627-1638
    • Sadowski, L.1    Nikoo, M.2
  • 13
    • 57749180879 scopus 로고    scopus 로고
    • Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic
    • M. Saridemir, I. B. Topcu, F. Ozcan, and M. H. Severcan, "Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic, " Construction and Building Materials, vol. 23, no. 3, pp. 1279-1286, 2009.
    • (2009) Construction and Building Materials , vol.23 , Issue.3 , pp. 1279-1286
    • Saridemir, M.1    Topcu F Ozcan, I.B.2    Severcan, M.H.3
  • 14
    • 63249107491 scopus 로고    scopus 로고
    • Neural networks for predicting compressive strength of structural light weight concrete
    • M. M. Alshihri, A. M. Azmy, and M. S. El-Bisy, "Neural networks for predicting compressive strength of structural light weight concrete, " Construction and Building Materials, vol. 23, no. 6, pp. 2214-2219, 2009.
    • (2009) Construction and Building Materials , vol.23 , Issue.6 , pp. 2214-2219
    • Alshihri, M.M.1    Azmy, A.M.2    El-Bisy, M.S.3
  • 15
    • 71749110340 scopus 로고    scopus 로고
    • Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization
    • H.-C. Tsai, "Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization, " Expert Systems with Applications, vol. 37, no. 2, pp. 1104-1112, 2010.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1104-1112
    • Tsai, H.-C.1
  • 16
    • 80755135534 scopus 로고    scopus 로고
    • Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network
    • M. Uysal and H. Tanyildizi, "Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network, " Construction and Building Materials, vol. 27, no. 1, pp. 404-414, 2012.
    • (2012) Construction and Building Materials , vol.27 , Issue.1 , pp. 404-414
    • Uysal, M.1    Tanyildizi, H.2
  • 18
    • 84876157910 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks: A review
    • S. Ding, H. Li, C. Su, J. Yu, and F. Jin, "Evolutionary artificial neural networks: a review, " Artificial Intelligence Review, vol. 39, no. 3, pp. 251-260, 2013.
    • (2013) Artificial Intelligence Review , vol.39 , Issue.3 , pp. 251-260
    • Ding, S.1    Li, H.2    Su, C.3    Yu, J.4    Jin, F.5
  • 19
    • 77955471698 scopus 로고    scopus 로고
    • Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV
    • R. Madandoust, R. Ghavidel, and N. Nariman-Zadeh, "Evolutionary design of generalized GMDH-type neural network for prediction of concrete compressive strength using UPV, " Computational Materials Science, vol. 49, no. 3, pp. 556-567, 2010.
    • (2010) Computational Materials Science , vol.49 , Issue.3 , pp. 556-567
    • Madandoust, R.1    Ghavidel, R.2    Nariman-Zadeh, N.3
  • 20
    • 84879712788 scopus 로고    scopus 로고
    • Determining displacement in concrete reinforcement building with using evolutionary artificial neural networks
    • M. Nikoo, P. Zarfam, and M. Nikoo, "Determining displacement in concrete reinforcement building with using evolutionary artificial neural networks, " World Applied Sciences Journal, vol. 16, no. 12, pp. 1699-1708, 2012.
    • (2012) World Applied Sciences Journal , vol.16 , Issue.12 , pp. 1699-1708
    • Nikoo, M.1    Zarfam, P.2    Nikoo, M.3
  • 21
    • 84920708030 scopus 로고    scopus 로고
    • Determination of compressive strength of concrete using Self Organization Feature Map (SOFM)
    • M. Nikoo, P. Zarfam, and H. Sayahpour, "Determination of compressive strength of concrete using Self Organization Feature Map (SOFM), " Engineering with Computers, vol. 31, no. 1, pp. 113-121, 2015.
    • (2015) Engineering with Computers , vol.31 , Issue.1 , pp. 113-121
    • Nikoo, M.1    Zarfam, P.2    Sayahpour, H.3
  • 22
    • 34247597383 scopus 로고    scopus 로고
    • An experimental study on optimum usage of GGBS for the compressive strength of concrete
    • A. Oner and S. Akyuz, "An experimental study on optimum usage of GGBS for the compressive strength of concrete, " Cement and Concrete Composites, vol. 29, no. 6, pp. 505-514, 2007.
    • (2007) Cement and Concrete Composites , vol.29 , Issue.6 , pp. 505-514
    • Oner, A.1    Akyuz, S.2
  • 23
    • 33747198817 scopus 로고    scopus 로고
    • Autogenous shrinkage of concrete containing granulated blast-furnace slag
    • K. M. Lee, H. K. Lee, S. H. Lee, and G. Y. Kim, "Autogenous shrinkage of concrete containing granulated blast-furnace slag, " Cement and Concrete Research, vol. 36, no. 7, pp. 1279-1285, 2006.
    • (2006) Cement and Concrete Research , vol.36 , Issue.7 , pp. 1279-1285
    • Lee, K.M.1    Lee, H.K.2    Lee, S.H.3    Kim, G.Y.4
  • 25
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • G. J. Bowden, G. C. Dandy, and H. R. Maier, "Input determination for neural network models in water resources applications. Part 1-background and methodology, " Journal of Hydrology, vol. 301, no. 1-4, pp. 75-92, 2005.
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.