메뉴 건너뛰기




Volumn 38, Issue 8, 2011, Pages 9609-9618

Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network

Author keywords

Admixture concrete; Artificial neural network; Compressive strength; Multiple regression analysis

Indexed keywords

ADMIXTURE CONCRETE; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK MODELS; BLAST FURNACE SLAGS; CLASSICAL METHODS; COMPRESSIVE STRENGTH OF CONCRETE; CONCRETE MIXTURE; FUNCTIONAL RELATIONSHIP; MINERAL ADMIXTURES; MULTIPLE REGRESSION ANALYSIS; MULTIVARIABLE REGRESSION ANALYSIS; NON DESTRUCTIVE TESTING; REBOUND NUMBER; ULTRASONIC PULSE VELOCITY;

EID: 79953730262     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.01.156     Document Type: Article
Times cited : (326)

References (34)
  • 1
    • 0023164376 scopus 로고
    • Optimization of concrete mix proportioning using reduced factorial experimental technique
    • A.F. Abbasi, M. Ahmad, and M. Wasim Optimization of concrete mix proportioning using reduced factorial experimental technique ACI Materials Journal 84 1987 55 63 (Pubitemid 17553355)
    • (1987) ACI Materials Journal , vol.84 , Issue.1 , pp. 55-63
    • Abbasi, A.F.1    Ahmad Munir2    Wasim Mohammad3
  • 2
    • 63249107491 scopus 로고    scopus 로고
    • Neural networks for predicting compressive strength of structural light weight concrete
    • M.M. Alshihri, A.M. Azmy, and M.S. El-Bisy Neural networks for predicting compressive strength of structural light weight concrete Construction and Building Materials 23 2009 2214 2219
    • (2009) Construction and Building Materials , vol.23 , pp. 2214-2219
    • Alshihri, M.M.1    Azmy, A.M.2    El-Bisy, M.S.3
  • 3
    • 0012737814 scopus 로고    scopus 로고
    • ASTM C 39. West Conshohocken, PA, USA: American Society for Testing and Materials International
    • ASTM C 39. (2001). Test for compressive strength of cylindrical concrete specimens. West Conshohocken, PA, USA: American Society for Testing and Materials International.
    • (2001) Test for Compressive Strength of Cylindrical Concrete Specimens
  • 5
    • 79953712404 scopus 로고    scopus 로고
    • ASTM C 805. West Conshohocken, PA, USA: American Society for Testing and Materials International
    • ASTM C 805. (1997). Test for rebound number of hardened concrete. West Conshohocken, PA, USA: American Society for Testing and Materials International.
    • (1997) Test for Rebound Number of Hardened Concrete
  • 6
    • 0004260216 scopus 로고    scopus 로고
    • BS 12 London: British Standards Institution
    • BS 12. (1996). Specification for Portland cement. London: British Standards Institution.
    • (1996) Specification for Portland Cement
  • 10
    • 0035480545 scopus 로고    scopus 로고
    • Neural networks for predicting properties of concretes with admixtures
    • DOI 10.1016/S0950-0618(01)00006-X, PII S095006180100006X
    • W.P.S. Dias, and S.P. Pooliyadda Neural networks for predicting properties of concretes with admixtures Construction and Building Materials 15 2001 371 379 (Pubitemid 32573518)
    • (2001) Construction and Building Materials , vol.15 , Issue.7 , pp. 371-379
    • Dias, W.P.S.1    Pooliyadda, S.P.2
  • 12
  • 14
    • 0035492232 scopus 로고    scopus 로고
    • Evaluation of simple methods for assessing the uniaxial compressive strength of rock
    • DOI 10.1016/S1365-1609(01)00039-9, PII S1365160901000399
    • S. Kahraman Evaluation of simple methods for assessing the uniaxial compressive strength of rock International Journal of Rock Mechanics and Mining Science 38 7 2001 981 994 (Pubitemid 34021310)
    • (2001) International Journal of Rock Mechanics and Mining Sciences , vol.38 , Issue.7 , pp. 981-994
    • Kahraman, S.1
  • 16
    • 0031084643 scopus 로고    scopus 로고
    • Concrete strength prediction by means of neural network
    • PII S095006189700007X
    • S. Lai, and M. Sera Concrete strength prediction by means of neural network Construction and Building Materials 11 1997 93 98 (Pubitemid 127420185)
    • (1997) Construction and Building Materials , vol.11 , Issue.2 , pp. 93-98
    • Lai, S.1    Serra, M.2
  • 17
    • 0037653583 scopus 로고    scopus 로고
    • Prediction of concrete strength using artificial neural networks
    • DOI 10.1016/S0141-0296(03)00004-X, PII S014102960300004X
    • S. Lee Prediction of concrete strength using artificial neural networks Engineering Structures 25 2003 849 857 (Pubitemid 36558074)
    • (2003) Engineering Structures , vol.25 , Issue.7 , pp. 849-857
    • Lee, S.C.1
  • 18
    • 0000873069 scopus 로고
    • A method for the solution of certain problems in least squares
    • K. Levenberg A method for the solution of certain problems in least squares Quarterly of Applied Mathematics 2 1944 164 168
    • (1944) Quarterly of Applied Mathematics , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 20
    • 0033993275 scopus 로고    scopus 로고
    • Strength development of concrete incorporating high levels of ground granulated blast-furnace slag at low temperatures
    • T. Miura, and I. Iwaki Strength development of concrete incorporating high levels of ground granulated blast-furnace slag at low temperatures ACI Materials Journal 9 1 2000 66 70
    • (2000) ACI Materials Journal , vol.9 , Issue.1 , pp. 66-70
    • Miura, T.1    Iwaki, I.2
  • 22
    • 0035470516 scopus 로고    scopus 로고
    • Predicting performance of self-compacting concrete mixtures using artificial neural networks
    • M. Nehdi, H.E. Chabib, and A. Naggar Predicting performance of self-compacting concrete mixtures using artificial neural networks ACI Materials Journal 98 5 2001 394 401
    • (2001) ACI Materials Journal , vol.98 , Issue.5 , pp. 394-401
    • Nehdi, M.1    Chabib, H.E.2    Naggar, A.3
  • 23
    • 0004026084 scopus 로고
    • Properties of concrete
    • Pearson Education Limited England
    • A.M. Neville Properties of concrete Essex: Harlow 1995 Pearson Education Limited England
    • (1995) Essex: Harlow
    • Neville, A.M.1
  • 24
    • 1842584568 scopus 로고    scopus 로고
    • Simulating size effect on shear strength of RC beams without stirrups using neural networks
    • DOI 10.1016/j.engstruct.2004.01.009, PII S0141029604000136
    • A.W.C. Oreta Simulating size effect on shear strength of RC beams without stirrups using neural networks Engineering Structures 26 2004 681 691 (Pubitemid 38454224)
    • (2004) Engineering Structures , vol.26 , Issue.5 , pp. 681-691
    • Oreta, A.W.C.1
  • 25
    • 33646926510 scopus 로고    scopus 로고
    • Predicting the compressive strength and slump of high strength concrete using neural network
    • DOI 10.1016/j.conbuildmat.2005.01.054, PII S0950061805000942
    • A. Oztas, M. Pala, E. Özbay, E. Kanca, M. Caglar, and M.A. Bhatti Predicting the compressive strength and slump of high strength concrete using neural network Construction and Building Materials 20 2006 769 775 (Pubitemid 43795504)
    • (2006) Construction and Building Materials , vol.20 , Issue.9 , pp. 769-775
    • Oztas, A.1    Pala, M.2    Ozbay, E.3    Kanca, E.4    Caglar, N.5    Bhatti, M.A.6
  • 26
    • 0033704025 scopus 로고    scopus 로고
    • Concrete strength by combined non-destructive methods simply and reliably predicted
    • H.Y. Qasrawi Concrete strength by combined non-destructive methods simply and reliably predicted Cement and Concrete Research 30 5 2000 739 746
    • (2000) Cement and Concrete Research , vol.30 , Issue.5 , pp. 739-746
    • Qasrawi, H.Y.1
  • 27
    • 0028416468 scopus 로고
    • Simulating structural analysis with neural network
    • J.L. Rogers Simulating structural analysis with neural network Journal of Computing in Civil Engineering 8 2 1994 252 265
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 252-265
    • Rogers, J.L.1
  • 28
    • 0025593320 scopus 로고
    • Correlating Schmidt hardness with compressive strength and Young's modulus of carbonate rocks
    • C.I. Sachpazi Correlating Schmidt hardness with compressive strength and Young's modulus of carbonate rocks Bulletin of Engineering Geology and the Environment 42 1 1990 75 84
    • (1990) Bulletin of Engineering Geology and the Environment , vol.42 , Issue.1 , pp. 75-84
    • Sachpazi, C.I.1
  • 29
    • 57749180879 scopus 로고    scopus 로고
    • Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic
    • M. Saridemir, I.B. Topcu, F. Ozcan, and M.H. Severcan Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic Construction and Building Materials 23 2009 1279 1286
    • (2009) Construction and Building Materials , vol.23 , pp. 1279-1286
    • Saridemir, M.1    Topcu, I.B.2    Ozcan, F.3    Severcan, M.H.4
  • 32
    • 57049177642 scopus 로고    scopus 로고
    • Predicting of concrete strength using ultrasonic pulse velocity and artificial neural networks
    • G. Trtnink, B. Kavcic, and G. Turk Predicting of concrete strength using ultrasonic pulse velocity and artificial neural networks Ultrasonics 49 1 2009 53 60
    • (2009) Ultrasonics , vol.49 , Issue.1 , pp. 53-60
    • Trtnink, G.1    Kavcic, B.2    Turk, G.3
  • 34
    • 0032295215 scopus 로고    scopus 로고
    • Modelling of strength of HPC using ANN
    • I.C. Yeh Modelling of strength of HPC using ANN Cement and Concrete Research 28 12 1998 1797 1808
    • (1998) Cement and Concrete Research , vol.28 , Issue.12 , pp. 1797-1808
    • Yeh, I.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.