메뉴 건너뛰기




Volumn 31, Issue 1, 2015, Pages 113-121

Determination of compressive strength of concrete using Self Organization Feature Map (SOFM)

Author keywords

Artificial neural network; Compressive strength of concrete; Kohonen; Self Organization Feature Map; Statistical model

Indexed keywords

COMPRESSIVE STRENGTH; CONCRETES; CONFORMAL MAPPING; GENETIC ALGORITHMS; NEURAL NETWORKS;

EID: 84920708030     PISSN: 01770667     EISSN: 14355663     Source Type: Journal    
DOI: 10.1007/s00366-013-0334-x     Document Type: Article
Times cited : (58)

References (11)
  • 1
    • 63249107491 scopus 로고    scopus 로고
    • Neural networks for predicting compressive strength of structural light weight concrete
    • Alshihri MM, Azmy AM, El-Bisy MS (2009) Neural networks for predicting compressive strength of structural light weight concrete. Constr Build Mater 23(6):2214–2219
    • (2009) Constr Build Mater , vol.23 , Issue.6 , pp. 2214-2219
    • Alshihri, M.M.1    Azmy, A.M.2    El-Bisy, M.S.3
  • 2
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1—background and methodology
    • Gavin J, Bowden GC (2005) Input determination for neural network models in water resources applications. Part 1—background and methodology. J Hydrol 301(1–4):75–92
    • (2005) J Hydrol , vol.301 , Issue.1-4 , pp. 75-92
    • Gavin, J.1    Bowden, G.C.2
  • 4
    • 79951555862 scopus 로고    scopus 로고
    • 2 nanoparticles by artificial neural network and genetic programming
    • 2 nanoparticles by artificial neural network and genetic programming. Compos Part B Eng 42(3):473–488
    • (2011) Compos Part B Eng , vol.42 , Issue.3 , pp. 473-488
    • Nazari, A.1    Riahi, S.2
  • 5
    • 67349263822 scopus 로고    scopus 로고
    • Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete
    • Özcan F, Atiş CD, Karahan O, Uncuoğlu E, Tanyildizi H (2009) Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv Eng Softw 40(9):856–863
    • (2009) Adv Eng Softw , vol.40 , Issue.9 , pp. 856-863
    • Özcan, F.1    Atiş, C.D.2    Karahan, O.3    Uncuoğlu, E.4    Tanyildizi, H.5
  • 6
    • 79960004109 scopus 로고    scopus 로고
    • Empirical modeling of splitting tensile strength from cylinder compressive strength of concrete by genetic programming
    • Sarıdemir M (2011) Empirical modeling of splitting tensile strength from cylinder compressive strength of concrete by genetic programming. Expert Syst Appl 38(11):14257–14268
    • (2011) Expert Syst Appl , vol.38 , Issue.11 , pp. 14257-14268
    • Sarıdemir, M.1
  • 7
    • 57749180879 scopus 로고    scopus 로고
    • Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic
    • Sarıdemira M, Topçu İB, Özcan F, Severcan MH (2009) Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic. Constr Build Mater 23(3):1279–1286
    • (2009) Constr Build Mater , vol.23 , Issue.3 , pp. 1279-1286
    • Sarıdemira, M.1    Topçu, İB.2    Özcan, F.3    Severcan, M.H.4
  • 8
    • 77956394851 scopus 로고    scopus 로고
    • A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks
    • Słoński M (2010) A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks. Comput Struct 88(21–22):1248–1254
    • (2010) Comput Struct , vol.88 , Issue.21-22 , pp. 1248-1254
    • Słoński, M.1
  • 9
    • 77449135175 scopus 로고    scopus 로고
    • Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models
    • Sobhani J, Najimi M, Pourkhorshidi AR, Parhizkar T (2010) Prediction of the compressive strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models. Constr Build Mater 24(5):709–718
    • (2010) Constr Build Mater , vol.24 , Issue.5 , pp. 709-718
    • Sobhani, J.1    Najimi, M.2    Pourkhorshidi, A.R.3    Parhizkar, T.4
  • 10
    • 85016696201 scopus 로고    scopus 로고
    • Self-organizing feature map with improved performance by non-monotonic variation of the learning rate
    • Srinivas G, Vasanth P, Miroslav T (2005) Self-organizing feature map with improved performance by non-monotonic variation of the learning rate. freepatentsonline (FPO)
    • (2005) freepatentsonline (FPO)
    • Srinivas, G.1    Vasanth, P.2    Miroslav, T.3
  • 11
    • 80755135534 scopus 로고    scopus 로고
    • Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network
    • Uysal M, Tanyildizi H (2012) Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr Build Mater 27(1):404–414
    • (2012) Constr Build Mater , vol.27 , Issue.1 , pp. 404-414
    • Uysal, M.1    Tanyildizi, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.