메뉴 건너뛰기




Volumn 37, Issue 2, 2010, Pages 1104-1112

Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization

Author keywords

High order; Hybrid connectors; Multilayer perceptrons; Neural networks; Particle swarm optimization; Specimen strengths

Indexed keywords

A-CENTER; CONCRETE CYLINDERS; CONCRETE DEEP BEAMS; DATA SETS; HIGH-ORDER; HYBRID CONNECTORS; HYBRID MULTILAYERS; MULTI-LAYER PERCEPTRONS; OPTIMIZATION TASK; UNIFIED PARTICLE SWARM OPTIMIZATION;

EID: 71749110340     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.06.093     Document Type: Article
Times cited : (52)

References (28)
  • 2
    • 33744548453 scopus 로고    scopus 로고
    • Prediction of shear strength of steel fiber RC beams using neural networks
    • Adhikary B.B., and Mutsuyoshi H. Prediction of shear strength of steel fiber RC beams using neural networks. Construction and Building Materials 20 9 (2006) 801-811
    • (2006) Construction and Building Materials , vol.20 , Issue.9 , pp. 801-811
    • Adhikary, B.B.1    Mutsuyoshi, H.2
  • 4
    • 15944408017 scopus 로고    scopus 로고
    • Modified high-order neural network for invariant pattern recognition
    • Artyomov E., and Yadid-Pecht O. Modified high-order neural network for invariant pattern recognition. Pattern Recognition Letters 26 6 (2005) 843-851
    • (2005) Pattern Recognition Letters , vol.26 , Issue.6 , pp. 843-851
    • Artyomov, E.1    Yadid-Pecht, O.2
  • 5
    • 2442480440 scopus 로고    scopus 로고
    • Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks
    • Cladera A., and Mari A.R. Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Engineering Structures 26 7 (2004) 917-926
    • (2004) Engineering Structures , vol.26 , Issue.7 , pp. 917-926
    • Cladera, A.1    Mari, A.R.2
  • 8
    • 0033666935 scopus 로고    scopus 로고
    • Eberhart, R. C., & Shi, Y. (2000), Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings 2000 IEEE CEC, IEEE service center, Piscataway, NJ (pp. 84-88).
    • Eberhart, R. C., & Shi, Y. (2000), Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings 2000 IEEE CEC, IEEE service center, Piscataway, NJ (pp. 84-88).
  • 12
    • 33845990266 scopus 로고    scopus 로고
    • Center particle swarm optimization
    • Liu Y., Qin Z., Shi Z., and Lu J. Center particle swarm optimization. Neurocomputing 70 4-6 (2007) 672-679
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 672-679
    • Liu, Y.1    Qin, Z.2    Shi, Z.3    Lu, J.4
  • 13
    • 0037490974 scopus 로고    scopus 로고
    • An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation
    • Lee S.J., Lee S.R., and Kim Y.S. An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation. Computers and Geotechnics 30 6 (2003) 489-503
    • (2003) Computers and Geotechnics , vol.30 , Issue.6 , pp. 489-503
    • Lee, S.J.1    Lee, S.R.2    Kim, Y.S.3
  • 15
    • 16544375206 scopus 로고    scopus 로고
    • Predicting the shear strength of reinforced concrete beams using artificial neural networks
    • Mansour M.Y., Dicleli M., Lee J.Y., and Zhang J. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Engineering Structures 26 6 (2004) 781-799
    • (2004) Engineering Structures , vol.26 , Issue.6 , pp. 781-799
    • Mansour, M.Y.1    Dicleli, M.2    Lee, J.Y.3    Zhang, J.4
  • 16
    • 0024731787 scopus 로고
    • Formula for the shear strength of deep beams
    • Mau S.T., and Hsu T.C. Formula for the shear strength of deep beams. ACI Structural Journal 86 5 (1989) 516-523
    • (1989) ACI Structural Journal , vol.86 , Issue.5 , pp. 516-523
    • Mau, S.T.1    Hsu, T.C.2
  • 18
    • 0032590360 scopus 로고    scopus 로고
    • Application of neural networks for proportioning of concrete mixes
    • Oh J.W., Lee I.W., Kim J.T., and Lee G.W. Application of neural networks for proportioning of concrete mixes. ACI Materials Journal 96 1 (1999) 61-67
    • (1999) ACI Materials Journal , vol.96 , Issue.1 , pp. 61-67
    • Oh, J.W.1    Lee, I.W.2    Kim, J.T.3    Lee, G.W.4
  • 19
    • 1842584568 scopus 로고    scopus 로고
    • Simulating size effect on shear strength of RC beams without stirrups using neural networks
    • Oreta A.W.C. Simulating size effect on shear strength of RC beams without stirrups using neural networks. Engineering Structures 26 5 (2004) 681-691
    • (2004) Engineering Structures , vol.26 , Issue.5 , pp. 681-691
    • Oreta, A.W.C.1
  • 20
    • 71749114442 scopus 로고    scopus 로고
    • Parsopoulos, K. E., & Vrahatis, M. N. (2004). UPSO: A unified particle swarm optimization scheme. In Proceedings of the international conference of computational methods in sciences and engineering, ICCMSE 2004. In Lecture series on computer and computational sciences (pp. 868-873) 1. Zeist, The Netherlands: SP International Science Publishers.
    • Parsopoulos, K. E., & Vrahatis, M. N. (2004). UPSO: A unified particle swarm optimization scheme. In Proceedings of the international conference of computational methods in sciences and engineering, ICCMSE 2004. In Lecture series on computer and computational sciences (pp. 868-873) Vol. 1. Zeist, The Netherlands: SP International Science Publishers.
  • 21
    • 34247548801 scopus 로고    scopus 로고
    • Parameter selection and adaptation in unified particle swarm optimization
    • Parsopoulos K.E., and Vrahatis M.N. Parameter selection and adaptation in unified particle swarm optimization. Mathematical and Computer Modelling 46 1-2 (2007) 198-213
    • (2007) Mathematical and Computer Modelling , vol.46 , Issue.1-2 , pp. 198-213
    • Parsopoulos, K.E.1    Vrahatis, M.N.2
  • 23
    • 0035398627 scopus 로고    scopus 로고
    • Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks
    • Sanad A., and Saka M.P. Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks. Journal of Structural Engineering 127 7 (2001) 818-828
    • (2001) Journal of Structural Engineering , vol.127 , Issue.7 , pp. 818-828
    • Sanad, A.1    Saka, M.P.2
  • 24
    • 67349216694 scopus 로고    scopus 로고
    • Hybrid high order neural networks
    • Tsai H.C. Hybrid high order neural networks. Applied Soft Computing 9 (2009) 874-881
    • (2009) Applied Soft Computing , vol.9 , pp. 874-881
    • Tsai, H.C.1
  • 26
    • 33746127525 scopus 로고    scopus 로고
    • Analysis of strength of concrete using design of experiments and neural networks
    • Yeh I.C. Analysis of strength of concrete using design of experiments and neural networks. Journal of Materials in Civil Engineering 18 4 (2006) 597-604
    • (2006) Journal of Materials in Civil Engineering , vol.18 , Issue.4 , pp. 597-604
    • Yeh, I.C.1
  • 27
    • 33847379879 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization algorithm for feedforward neural network training
    • Zhang J.R., Zhang J., Lok T.M., and Lyu M.R. A hybrid particle swarm optimization algorithm for feedforward neural network training. Applied Mathematics and Computation 185 (2007) 1026-1037
    • (2007) Applied Mathematics and Computation , vol.185 , pp. 1026-1037
    • Zhang, J.R.1    Zhang, J.2    Lok, T.M.3    Lyu, M.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.