메뉴 건너뛰기




Volumn , Issue , 2015, Pages 1060-1067

Extracting image regions by structured edge prediction

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE SEGMENTATION; OBJECT DETECTION; TREES (MATHEMATICS);

EID: 84925381775     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WACV.2015.146     Document Type: Conference Paper
Times cited : (4)

References (28)
  • 2
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. PAMI, 34(11):2189-2202, 2012.
    • (2012) PAMI , vol.34 , Issue.11 , pp. 2189-2202
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 3
    • 51949110880 scopus 로고    scopus 로고
    • Boundary extraction in natural images using ultrametric contour maps
    • P. Arbelaez. Boundary extraction in natural images using ultrametric contour maps. In POCV, 2006.
    • (2006) POCV
    • Arbelaez, P.1
  • 4
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. PAMI, 33(5):898-916, 2011.
    • (2011) PAMI , vol.33 , Issue.5 , pp. 898-916
    • Arbelaez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 5
    • 0022808786 scopus 로고
    • A computational approach to edge detection
    • J. Canny. A computational approach to edge detection. PAMI, 8(6):679-698, 1986.
    • (1986) PAMI , vol.8 , Issue.6 , pp. 679-698
    • Canny, J.1
  • 6
    • 84861335581 scopus 로고    scopus 로고
    • Cpmc: Automatic object segmentation using constrained parametric min-cuts
    • J. Carreira and C. Sminchisescu. Cpmc: Automatic object segmentation using constrained parametric min-cuts. PAMI, 34(7):1312-1328, 2012.
    • (2012) PAMI , vol.34 , Issue.7 , pp. 1312-1328
    • Carreira, J.1    Sminchisescu, C.2
  • 7
    • 84911456915 scopus 로고    scopus 로고
    • BING: Binarized normed gradients for objectness estimation at 300fps
    • M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. H. S. Torr. BING: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014.
    • (2014) CVPR
    • Cheng, M.-M.1    Zhang, Z.2    Lin, W.-Y.3    Torr, P.H.S.4
  • 8
    • 84859414659 scopus 로고    scopus 로고
    • Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
    • A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision, 7(2-3):81-227, 2012.
    • (2012) Foundations and Trends in Computer Graphics and Vision , vol.7 , Issue.2-3 , pp. 81-227
    • Criminisi, A.1    Shotton, J.2    Konukoglu, E.3
  • 9
    • 33845580709 scopus 로고    scopus 로고
    • Supervised learning of edges and object boundaries
    • P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In CVPR, 2006.
    • (2006) CVPR
    • Dollar, P.1    Tu, Z.2    Belongie, S.3
  • 10
    • 84898820142 scopus 로고    scopus 로고
    • Structured forests for fast edge detection
    • P. Dollar and C. L. Zitnick. Structured forests for fast edge detection. In ICCV, 2013.
    • (2013) ICCV
    • Dollar, P.1    Zitnick, C.L.2
  • 11
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • C. Dorin and P. Meer. Mean shift: A robust approach toward feature space analysis. PAMI, 24(5):603-619, 2002.
    • (2002) PAMI , vol.24 , Issue.5 , pp. 603-619
    • Dorin, C.1    Meer, P.2
  • 12
    • 84891598441 scopus 로고    scopus 로고
    • Category-independent object proposals with diverse ranking
    • I. Endres and D. Hoiem. Category-independent object proposals with diverse ranking. PAMI, 36(2):222-234, 2014.
    • (2014) PAMI , vol.36 , Issue.2 , pp. 222-234
    • Endres, I.1    Hoiem, D.2
  • 14
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graphbased image segmentation
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graphbased image segmentation. IJCV, 59(2):167-181, 2004.
    • (2004) IJCV , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 15
    • 0026221555 scopus 로고
    • The design and use of steerable filters
    • W. T. Freeman and E. H. Adelson. The design and use of steerable filters. PAMI, 13(9):891-906, 1991.
    • (1991) PAMI , vol.13 , Issue.9 , pp. 891-906
    • Freeman, W.T.1    Adelson, E.H.2
  • 16
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 17
    • 84856646828 scopus 로고    scopus 로고
    • Structured class-labels in random forests for semantic image labelling
    • P. Kontschieder, S. R. Bulo, H. Bischof, and M. Pelillo. Structured class-labels in random forests for semantic image labelling. In ICCV, 2011.
    • (2011) ICCV
    • Kontschieder, P.1    Bulo, S.R.2    Bischof, H.3    Pelillo, M.4
  • 18
    • 84887354170 scopus 로고    scopus 로고
    • Sketch tokens: A learned mid-level representation for contour and object detection
    • J. Lim, C. L. Zitnick, and P. Dollar. Sketch tokens: A learned mid-level representation for contour and object detection. In CVPR, 2013.
    • (2013) CVPR
    • Lim, J.1    Zitnick, C.L.2    Dollar, P.3
  • 19
    • 84898781017 scopus 로고    scopus 로고
    • Prime object proposals with randomized prim's algorithm
    • S. Manén, M. Guillaumin, and L. Van Gool. Prime object proposals with randomized prim's algorithm. In ICCV, 2013.
    • (2013) ICCV
    • Manén, S.1    Guillaumin, M.2    Van Gool, L.3
  • 20
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color and texture cues
    • D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color and texture cues. PAMI, 26(5):530-549, 2004.
    • (2004) PAMI , vol.26 , Issue.5 , pp. 530-549
    • Martin, D.1    Fowlkes, C.2    Malik, J.3
  • 22
    • 0025578952 scopus 로고
    • Detecting and localizing edges composed of steps, peaks and roofs
    • P. Perona and J. Malik. Detecting and localizing edges composed of steps, peaks and roofs. In ICCV, 1990.
    • (1990) ICCV
    • Perona, P.1    Malik, J.2
  • 23
    • 84877752264 scopus 로고    scopus 로고
    • Discriminatively trained sparse code gradients for contour detection
    • X. Ren and L. Bo. Discriminatively trained sparse code gradients for contour detection. In NIPS, 2012.
    • (2012) NIPS
    • Ren, X.1    Bo, L.2
  • 24
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI, 22(8):888-905, 2000.
    • (2000) PAMI , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 25
    • 33745897632 scopus 로고    scopus 로고
    • Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering
    • Z. Tu. Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering. In ICCV, 2005.
    • (2005) ICCV
    • Tu, Z.1
  • 27
    • 84911380286 scopus 로고    scopus 로고
    • Context driven scene parsing with attention to rare classes
    • J. Yang, B. Price, S. Cohen, , and M.-H. Yang. Context driven scene parsing with attention to rare classes. In CVPR, 2014.
    • (2014) CVPR
    • Yang, J.1    Price, B.2    Cohen, S.3    Yang, M.-H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.