-
1
-
-
84924983775
-
-
Project on Emerging Nanotechnologies. Consumer Products Inventory. Retrieved October 2013, from.
-
Project on Emerging Nanotechnologies. Consumer Products Inventory. Retrieved October 2013, from http://www.nanotechproject.org/cpi.
-
-
-
-
2
-
-
84863505057
-
Environmental transformations of silver nanoparticles: impact on stability and toxicity
-
Levard C, Hotze EM, Lowry GV, Brown GE Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol. 2012;46(13):6900–14. doi:10.1021/es2037405.
-
(2012)
Environ Sci Technol
, vol.46
, Issue.13
, pp. 6900-6914
-
-
Levard, C.1
Hotze, E.M.2
Lowry, G.V.3
Brown, G.E.4
-
3
-
-
84881306698
-
Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications
-
Reidy B, Haase A, Luch A, Dawson K, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6(6):2295–350.
-
(2013)
Materials
, vol.6
, Issue.6
, pp. 2295-2350
-
-
Reidy, B.1
Haase, A.2
Luch, A.3
Dawson, K.4
Lynch, I.5
-
4
-
-
0035253558
-
Repair of large bone defects with the use of autologous bone marrow stromal cells
-
Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med. 2001;344(5):385–6. doi:10.1056/NEJM200102013440516.
-
(2001)
N Engl J Med
, vol.344
, Issue.5
, pp. 385-386
-
-
Quarto, R.1
Mastrogiacomo, M.2
Cancedda, R.3
Kutepov, S.M.4
Mukhachev, V.5
Lavroukov, A.6
-
5
-
-
57049121770
-
Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation
-
Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G. Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther. 2008;10(6):R132. doi:10.1186/ar2549.
-
(2008)
Arthritis Res Ther
, vol.10
, Issue.6
, pp. 132
-
-
Brun, P.1
Dickinson, S.C.2
Zavan, B.3
Cortivo, R.4
Hollander, A.P.5
Abatangelo, G.6
-
6
-
-
0030698272
-
Tissue engineering and the development of Apligraf, a human skin equivalent
-
Eaglstein WH, Falanga V. Tissue engineering and the development of Apligraf, a human skin equivalent. Clin Ther. 1997;19(5):894–905.
-
(1997)
Clin Ther
, vol.19
, Issue.5
, pp. 894-905
-
-
Eaglstein, W.H.1
Falanga, V.2
-
7
-
-
0141872420
-
Automated tissue engineering: a major paradigm shift in health care
-
Mason C. Automated tissue engineering: a major paradigm shift in health care. Med Device Technol. 2003;14(1):16–8.
-
(2003)
Med Device Technol
, vol.14
, Issue.1
, pp. 16-18
-
-
Mason, C.1
-
8
-
-
84913597429
-
Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors
-
Costa PF, Martins A, Neves NM, Gomes ME, Reis RL. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. Tissue Eng B. 2014;. doi:10.1089/ten.TEB.2013.0751.
-
(2014)
Tissue Eng B
-
-
Costa, P.F.1
Martins, A.2
Neves, N.M.3
Gomes, M.E.4
Reis, R.L.5
-
9
-
-
77957562650
-
Biofabrication: a 21st century manufacturing paradigm
-
Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication. 2009;1(2):022001. doi:10.1088/1758-5082/1/2/022001.
-
(2009)
Biofabrication
, vol.1
, Issue.2
, pp. 022001
-
-
Mironov, V.1
Trusk, T.2
Kasyanov, V.3
Little, S.4
Swaja, R.5
Markwald, R.6
-
10
-
-
84904308833
-
3D biofabrication strategies for tissue engineering and regenerative medicine
-
Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014;16:247–76. doi:10.1146/annurev-bioeng-071813-105155.
-
(2014)
Annu Rev Biomed Eng
, vol.16
, pp. 247-276
-
-
Bajaj, P.1
Schweller, R.M.2
Khademhosseini, A.3
West, J.L.4
Bashir, R.5
-
11
-
-
34548295338
-
Origin and evolution of high throughput screening
-
Pereira DA, Williams JA. Origin and evolution of high throughput screening. Br J Pharmacol. 2007;152(1):53–61. doi:10.1038/sj.bjp.0707373.
-
(2007)
Br J Pharmacol.
, vol.152
, Issue.1
, pp. 53-61
-
-
Pereira, D.A.1
Williams, J.A.2
-
12
-
-
0032738825
-
A microfabricated fluorescence-activated cell sorter
-
Fu AY, Spence C, Scherer A, Arnold FH, Quake SR. A microfabricated fluorescence-activated cell sorter. Nat Biotechnol. 1999;17(11):1109–11. doi:10.1038/15095.
-
(1999)
Nat Biotechnol
, vol.17
, Issue.11
, pp. 1109-1111
-
-
Fu, A.Y.1
Spence, C.2
Scherer, A.3
Arnold, F.H.4
Quake, S.R.5
-
13
-
-
84860379480
-
A low-cost 2D fluorescence detection system for mum sized beads on-chip
-
Segerink LI, Koster MJ, Sprenkels AJ, van den Berg A. A low-cost 2D fluorescence detection system for mum sized beads on-chip. Lab Chip. 2012;12(10):1780–3. doi:10.1039/c2lc21187d.
-
(2012)
Lab Chip
, vol.12
, Issue.10
, pp. 1780-1783
-
-
Segerink, L.I.1
Koster, M.J.2
Sprenkels, A.J.3
van den Berg, A.4
-
14
-
-
80051745102
-
Inkjet-like printing of single-cells
-
Yusof A, Keegan H, Spillane CD, Sheils OM, Martin CM, O’Leary JJ, et al. Inkjet-like printing of single-cells. Lab Chip. 2011;11(14):2447–54. doi:10.1039/c1lc20176j.
-
(2011)
Lab Chip
, vol.11
, Issue.14
, pp. 2447-2454
-
-
Yusof, A.1
Keegan, H.2
Spillane, C.D.3
Sheils, O.M.4
Martin, C.M.5
O’Leary, J.J.6
-
15
-
-
17044366500
-
Laser printing of single cells: statistical analysis, cell viability, and stress
-
Barron JA, Krizman DB, Ringeisen BR. Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng. 2005;33(2):121–30.
-
(2005)
Ann Biomed Eng
, vol.33
, Issue.2
, pp. 121-130
-
-
Barron, J.A.1
Krizman, D.B.2
Ringeisen, B.R.3
-
16
-
-
3042597735
-
Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns
-
Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6(2):139–47.
-
(2004)
Biomed Microdevices
, vol.6
, Issue.2
, pp. 139-147
-
-
Barron, J.A.1
Wu, P.2
Ladouceur, H.D.3
Ringeisen, B.R.4
-
17
-
-
84873914826
-
Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates
-
Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5(1):015013. doi:10.1088/1758-5082/5/1/015013.
-
(2013)
Biofabrication
, vol.5
, Issue.1
, pp. 015013
-
-
Faulkner-Jones, A.1
Greenhough, S.2
King, J.A.3
Gardner, J.4
Courtney, A.5
Shu, W.6
-
18
-
-
0345491333
-
A simple method for forming embryoid body from mouse embryonic stem cells
-
Kurosawa H, Imamura T, Koike M, Sasaki K, Amano Y. A simple method for forming embryoid body from mouse embryonic stem cells. J Biosci Bioeng. 2003;96(4):409–11. doi:10.1016/S1389-1723(03)90148-4.
-
(2003)
J Biosci Bioeng
, vol.96
, Issue.4
, pp. 409-411
-
-
Kurosawa, H.1
Imamura, T.2
Koike, M.3
Sasaki, K.4
Amano, Y.5
-
19
-
-
0035941075
-
Taking cell-matrix adhesions to the third dimension
-
Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science. 2001;294(5547):1708–12. doi:10.1126/science.1064829.
-
(2001)
Science
, vol.294
, Issue.5547
, pp. 1708-1712
-
-
Cukierman, E.1
Pankov, R.2
Stevens, D.R.3
Yamada, K.M.4
-
20
-
-
33644653456
-
Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents
-
Sun T, Jackson S, Haycock JW, MacNeil S. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol. 2006;122(3):372–81. doi:10.1016/j.jbiotec.2006.12.021.
-
(2006)
J Biotechnol
, vol.122
, Issue.3
, pp. 372-381
-
-
Sun, T.1
Jackson, S.2
Haycock, J.W.3
MacNeil, S.4
-
21
-
-
23744472983
-
Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems
-
Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol. 2005;15(5):405–12. doi:10.1016/j.semcancer.2005.06.009.
-
(2005)
Semin Cancer Biol
, vol.15
, Issue.5
, pp. 405-412
-
-
Birgersdotter, A.1
Sandberg, R.2
Ernberg, I.3
-
22
-
-
75749158184
-
Biomaterials offer cancer research the third dimension
-
Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9(2):90–3. doi:10.1038/Nmat2619.
-
(2010)
Nat Mater
, vol.9
, Issue.2
, pp. 90-93
-
-
Hutmacher, D.W.1
-
23
-
-
69249208450
-
Scaffold-free vascular tissue engineering using bioprinting
-
Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30(30):5910–7. doi:10.1016/j.biomaterials.2009.06.034.
-
(2009)
Biomaterials
, vol.30
, Issue.30
, pp. 5910-5917
-
-
Norotte, C.1
Marga, F.S.2
Niklason, L.E.3
Forgacs, G.4
-
24
-
-
0016564764
-
Scaling in biology: the consequences of size
-
Schmidt-Nielsen K. Scaling in biology: the consequences of size. J Exp Zool. 1975;194(1):287–307. doi:10.1002/jez.1401940120.
-
(1975)
J Exp Zool
, vol.194
, Issue.1
, pp. 287-307
-
-
Schmidt-Nielsen, K.1
-
25
-
-
77953651709
-
Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
-
Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31(24):6173–81. doi:10.1016/j.biomaterials.2010.04.045.
-
(2010)
Biomaterials
, vol.31
, Issue.24
, pp. 6173-6181
-
-
Skardal, A.1
Zhang, J.2
Prestwich, G.D.3
-
26
-
-
84873549333
-
Guided bone regeneration using injectable vascular endothelial growth factor delivery gel
-
Kaigler D, Silva EA, Mooney DJ. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol. 2012;84(2):230–8. doi:10.1902/jop.2012.110684.
-
(2012)
J Periodontol
, vol.84
, Issue.2
, pp. 230-238
-
-
Kaigler, D.1
Silva, E.A.2
Mooney, D.J.3
-
27
-
-
84896549846
-
Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting
-
Wust S, Godla ME, Muller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater. 2014;10(2):630–40. doi:10.1016/j.actbio.2013.10.016.
-
(2014)
Acta Biomater
, vol.10
, Issue.2
, pp. 630-640
-
-
Wust, S.1
Godla, M.E.2
Muller, R.3
Hofmann, S.4
-
28
-
-
84900988712
-
3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs
-
Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30. doi:10.1002/adma.201305506.
-
(2014)
Adv Mater
, vol.26
, Issue.19
, pp. 3124-3130
-
-
Kolesky, D.B.1
Truby, R.L.2
Gladman, A.S.3
Busbee, T.A.4
Homan, K.A.5
Lewis, J.A.6
-
29
-
-
84866355664
-
Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
-
Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–74. doi:10.1038/nmat3357.
-
(2012)
Nat Mater
, vol.11
, Issue.9
, pp. 768-774
-
-
Miller, J.S.1
Stevens, K.R.2
Yang, M.T.3
Baker, B.M.4
Nguyen, D.H.5
Cohen, D.M.6
-
30
-
-
0027595948
-
Tissue engineering
-
Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.
-
(1993)
Science
, vol.260
, Issue.5110
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
31
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24. doi:10.1038/nmat1421.
-
(2005)
Nat Mater
, vol.4
, Issue.7
, pp. 518-524
-
-
Hollister, S.J.1
-
32
-
-
14844322862
-
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering
-
Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27. doi:10.1016/j.biomaterials.2004.11.057.
-
(2005)
Biomaterials
, vol.26
, Issue.23
, pp. 4817-4827
-
-
Williams, J.M.1
Adewunmi, A.2
Schek, R.M.3
Flanagan, C.L.4
Krebsbach, P.H.5
Feinberg, S.E.6
-
33
-
-
0037082740
-
Fused deposition modeling of novel scaffold architectures for tissue engineering applications
-
Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–85. doi:10.1016/S0142-9612(01)00232-0.
-
(2002)
Biomaterials
, vol.23
, Issue.4
, pp. 1169-1185
-
-
Zein, I.1
Hutmacher, D.W.2
Tan, K.C.3
Teoh, S.H.4
-
34
-
-
77955868224
-
Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds
-
Eosoly S, Brabazon D, Lohfeld S, Looney L. Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds. Acta Biomater. 2010;6(7):2511–7. doi:10.1016/j.actbio.2009.07.018.
-
(2010)
Acta Biomater
, vol.6
, Issue.7
, pp. 2511-2517
-
-
Eosoly, S.1
Brabazon, D.2
Lohfeld, S.3
Looney, L.4
-
35
-
-
35449004406
-
Melt electrospinning of poly-(ethylene glycol-block-epsilon-caprolactone)
-
Dalton PD, Lleixa Calvet J, Mourran A, Klee D, Moller M. Melt electrospinning of poly-(ethylene glycol-block-epsilon-caprolactone). Biotechnol J. 2006;1(9):998–1006. doi:10.1002/biot.200600064.
-
(2006)
Biotechnol J
, vol.1
, Issue.9
, pp. 998-1006
-
-
Dalton, P.D.1
Lleixa Calvet, J.2
Mourran, A.3
Klee, D.4
Moller, M.5
-
36
-
-
83455228407
-
Direct writing by way of melt electrospinning
-
Brown TD, Dalton PD, Hutmacher DW. Direct writing by way of melt electrospinning. Adv Mater. 2011;23(47):5651–7. doi:10.1002/adma.201103482.
-
(2011)
Adv Mater
, vol.23
, Issue.47
, pp. 5651-5657
-
-
Brown, T.D.1
Dalton, P.D.2
Hutmacher, D.W.3
-
37
-
-
84877752428
-
Dermal fibroblast infiltration of poly(epsilon-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode
-
Farrugia BL, Brown TD, Upton Z, Hutmacher DW, Dalton PD, Dargaville TR. Dermal fibroblast infiltration of poly(epsilon-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Biofabrication. 2013;5(2):025001. doi:10.1088/1758-5082/5/2/025001.
-
(2013)
Biofabrication
, vol.5
, Issue.2
, pp. 025001
-
-
Farrugia, B.L.1
Brown, T.D.2
Upton, Z.3
Hutmacher, D.W.4
Dalton, P.D.5
Dargaville, T.R.6
-
38
-
-
84893500059
-
Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure
-
Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, Hutmacher DW. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol. 2014;41(3):283–94. doi:10.1111/jcpe.12214.
-
(2014)
J Clin Periodontol
, vol.41
, Issue.3
, pp. 283-294
-
-
Costa, P.F.1
Vaquette, C.2
Zhang, Q.3
Reis, R.L.4
Ivanovski, S.5
Hutmacher, D.W.6
-
39
-
-
34547562054
-
Fabrication of combinatorial polymer scaffold libraries
-
Simon CG Jr, Stephens JS, Dorsey SM, Becker ML. Fabrication of combinatorial polymer scaffold libraries. Rev Sci Instrum. 2007;78(7):072207. doi:10.1063/1.2755761.
-
(2007)
Rev Sci Instrum
, vol.78
, Issue.7
, pp. 072207
-
-
Simon, C.G.1
Stephens, J.S.2
Dorsey, S.M.3
Becker, M.L.4
-
40
-
-
34347355575
-
Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns
-
Zapata P, Su J, Garcia AJ, Meredith JC. Quantitative high-throughput screening of osteoblast attachment, spreading, and proliferation on demixed polymer blend micropatterns. Biomacromolecules. 2007;8(6):1907–17. doi:10.1021/Bm061134t.
-
(2007)
Biomacromolecules
, vol.8
, Issue.6
, pp. 1907-1917
-
-
Zapata, P.1
Su, J.2
Garcia, A.J.3
Meredith, J.C.4
-
41
-
-
33751336911
-
Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation
-
Nakajima M, Ishimuro T, Kato K, Ko IK, Hirata I, Arima Y, et al. Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials. 2007;28(6):1048–60. doi:10.1016/j.biomaterials.2006.10.004.
-
(2007)
Biomaterials
, vol.28
, Issue.6
, pp. 1048-1060
-
-
Nakajima, M.1
Ishimuro, T.2
Kato, K.3
Ko, I.K.4
Hirata, I.5
Arima, Y.6
-
42
-
-
12344327314
-
Photo- and electropatterning of hydrogel-encapsulated living cell arrays
-
Albrecht DR, Tsang VL, Sah RL, Bhatia SN. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip. 2005;5(1):111–8. doi:10.1039/B406953f.
-
(2005)
Lab Chip
, vol.5
, Issue.1
, pp. 111-118
-
-
Albrecht, D.R.1
Tsang, V.L.2
Sah, R.L.3
Bhatia, S.N.4
-
43
-
-
23244435717
-
Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D, L-lactic acid) blends
-
Simon CG Jr, Eidelman N, Kennedy SB, Sehgal A, Khatri CA, Washburn NR. Combinatorial screening of cell proliferation on poly(L-lactic acid)/poly(D, L-lactic acid) blends. Biomaterials. 2005;26(34):6906–15. doi:10.1016/j.biomaterials.2005.04.050.
-
(2005)
Biomaterials
, vol.26
, Issue.34
, pp. 6906-6915
-
-
Simon, C.G.1
Eidelman, N.2
Kennedy, S.B.3
Sehgal, A.4
Khatri, C.A.5
Washburn, N.R.6
-
44
-
-
8344267891
-
New approaches to biomaterials design
-
Kohn J. New approaches to biomaterials design. Nat Mater. 2004;3(11):745–7. doi:10.1038/Nmat1249.
-
(2004)
Nat Mater
, vol.3
, Issue.11
, pp. 745-747
-
-
Kohn, J.1
-
45
-
-
3042825341
-
Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells
-
Anderson DG, Levenberg S, Langer R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol. 2004;22(7):863–6. doi:10.1038/nbt981.
-
(2004)
Nat Biotechnol
, vol.22
, Issue.7
, pp. 863-866
-
-
Anderson, D.G.1
Levenberg, S.2
Langer, R.3
-
46
-
-
84993661873
-
Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow
-
Costa PF, Vaquette C, Baldwin J, Chhaya M, Gomes ME, Reis RL, et al. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication. 2014;6(3):035006. doi:10.1088/1758-5082/6/3/035006.
-
(2014)
Biofabrication
, vol.6
, Issue.3
, pp. 035006
-
-
Costa, P.F.1
Vaquette, C.2
Baldwin, J.3
Chhaya, M.4
Gomes, M.E.5
Reis, R.L.6
-
47
-
-
84878751248
-
In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal
-
Higuera GA, Hendriks JA, van Dalum J, Wu L, Schotel R, Moreira-Teixeira L, et al. In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integr Biol. 2013;5(6):889–98. doi:10.1039/c3ib40023a.
-
(2013)
Integr Biol
, vol.5
, Issue.6
, pp. 889-898
-
-
Higuera, G.A.1
Hendriks, J.A.2
van Dalum, J.3
Wu, L.4
Schotel, R.5
Moreira-Teixeira, L.6
-
48
-
-
77951245659
-
In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice
-
Keriquel V, Guillemot F, Arnault I, Guillotin B, Miraux S, Amedee J, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication. 2010;2(1):014101. doi:10.1088/1758-5082/2/1/014101.
-
(2010)
Biofabrication
, vol.2
, Issue.1
, pp. 014101
-
-
Keriquel, V.1
Guillemot, F.2
Arnault, I.3
Guillotin, B.4
Miraux, S.5
Amedee, J.6
-
49
-
-
34447285526
-
Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures
-
Xu HH, Burguera EF, Carey LE. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures. Biomaterials. 2007;28(26):3786–96. doi:10.1016/j.biomaterials.2007.05.015.
-
(2007)
Biomaterials
, vol.28
, Issue.26
, pp. 3786-3796
-
-
Xu, H.H.1
Burguera, E.F.2
Carey, L.E.3
-
50
-
-
84872421595
-
The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate
-
Song G, Habibovic P, Bao C, Hu J, van Blitterswijk CA, Yuan H, et al. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials. 2013;34(9):2167–76. doi:10.1016/j.biomaterials.2012.12.010.
-
(2013)
Biomaterials
, vol.34
, Issue.9
, pp. 2167-2176
-
-
Song, G.1
Habibovic, P.2
Bao, C.3
Hu, J.4
van Blitterswijk, C.A.5
Yuan, H.6
|