-
1
-
-
79952232216
-
Global cancer statistics
-
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2): 69-90.
-
(2011)
CA Cancer J Clin.
, vol.61
, Issue.2
, pp. 69-90
-
-
Jemal, A.1
Bray, F.2
Center, M.M.3
Ferlay, J.4
Ward, E.5
Forman, D.6
-
2
-
-
34248169161
-
Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline
-
Loblaw DA, Virgo KS, Nam R, Somerfield MR, Ben-Josef E, Mendelson DS, et al. Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol. 2007;25(12): 1596-605.
-
(2007)
J Clin Oncol.
, vol.25
, Issue.12
, pp. 1596-1605
-
-
Loblaw, D.A.1
Virgo, K.S.2
Nam, R.3
Somerfield, M.R.4
Ben-Josef, E.5
Mendelson, D.S.6
-
3
-
-
47349122261
-
Treatment options for hormone-refractory prostate cancer
-
Chang SS. Treatment options for hormone-refractory prostate cancer. Rev Urol. 2007;9 Suppl 2: S13-8.
-
(2007)
Rev Urol.
, vol.9
, pp. S13-S18
-
-
Chang, S.S.1
-
4
-
-
0033198498
-
Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2
-
Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 1999;59(17): 4180-4.
-
(1999)
Cancer Res.
, vol.59
, Issue.17
, pp. 4180-4184
-
-
Lin, B.1
Ferguson, C.2
White, J.T.3
Wang, S.4
Vessella, R.5
True, L.D.6
-
5
-
-
66149145906
-
Androgen receptor controls EGFR and ERBB2 gene expression at different levels in prostate cancer cell lines
-
Pignon JC, Koopmansch B, Nolens G, Delacroix L, Waltregny D, Winkler R. Androgen receptor controls EGFR and ERBB2 gene expression at different levels in prostate cancer cell lines. Cancer Res. 2009;69(7): 2941-9.
-
(2009)
Cancer Res.
, vol.69
, Issue.7
, pp. 2941-2949
-
-
Pignon, J.C.1
Koopmansch, B.2
Nolens, G.3
Delacroix, L.4
Waltregny, D.5
Winkler, R.6
-
6
-
-
70349278378
-
Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis
-
Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene. 2009;28(37): 3307-19.
-
(2009)
Oncogene.
, vol.28
, Issue.37
, pp. 3307-3319
-
-
Song, H.1
Zhang, B.2
Watson, M.A.3
Humphrey, P.A.4
Lim, H.5
Milbrandt, J.6
-
7
-
-
84874826132
-
The association between metabolic syndrome and the risk of prostate cancer, high-grade prostate cancer, advanced prostate cancer, prostate cancer-specific mortality and biochemical recurrence
-
Xiang YZ, Xiong H, Cui ZL, Jiang SB, Xia QH, Zhao Y, et al. The association between metabolic syndrome and the risk of prostate cancer, high-grade prostate cancer, advanced prostate cancer, prostate cancer-specific mortality and biochemical recurrence. J Exp Clin Cancer Res. 2013;32: 9.
-
(2013)
J Exp Clin Cancer Res.
, vol.32
, pp. 9
-
-
Xiang, Y.Z.1
Xiong, H.2
Cui, Z.L.3
Jiang, S.B.4
Xia, Q.H.5
Zhao, Y.6
-
8
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1): 15-20.
-
(2005)
Cell.
, vol.120
, Issue.1
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
9
-
-
77955902024
-
The widespread regulation of microRNA biogenesis, function and decay
-
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9): 597-610.
-
(2010)
Nat Rev Genet.
, vol.11
, Issue.9
, pp. 597-610
-
-
Krol, J.1
Loedige, I.2
Filipowicz, W.3
-
10
-
-
60149098474
-
Small RNAs as guardians of the genome
-
Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell. 2009;136(4): 656-68.
-
(2009)
Cell.
, vol.136
, Issue.4
, pp. 656-668
-
-
Malone, C.D.1
Hannon, G.J.2
-
11
-
-
84864966395
-
MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma
-
Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y, et al. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol. 2012;19 Suppl 3: S656-64.
-
(2012)
Ann Surg Oncol.
, vol.19
, pp. S656-S664
-
-
Kurashige, J.1
Kamohara, H.2
Watanabe, M.3
Hiyoshi, Y.4
Iwatsuki, M.5
Tanaka, Y.6
-
12
-
-
84868627011
-
MicroRNA regulation of autophagy
-
Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis. 2012;33(11): 2018-25.
-
(2012)
Carcinogenesis.
, vol.33
, Issue.11
, pp. 2018-2025
-
-
Frankel, L.B.1
Lund, A.H.2
-
13
-
-
84891915416
-
Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGBeta4-PDCD4) as predictor of metastatic tumor potential
-
Ferraro A, Kontos CK, Boni T, Bantounas I, Siakouli D, Kosmidou V, et al. Epigenetic regulation of miR-21 in colorectal cancer: ITGB4 as a novel miR-21 target and a three-gene network (miR-21-ITGBeta4-PDCD4) as predictor of metastatic tumor potential. Epigenetics. 2014;9(1): 129-41.
-
(2014)
Epigenetics.
, vol.9
, Issue.1
, pp. 129-141
-
-
Ferraro, A.1
Kontos, C.K.2
Boni, T.3
Bantounas, I.4
Siakouli, D.5
Kosmidou, V.6
-
14
-
-
84862236784
-
Circulating microRNAs in cancer: Origin, function and application
-
Ma R, Jiang T, Kang X. Circulating microRNAs in cancer: Origin, function and application. J Exp Clin Cancer Res. 2012;31: 38.
-
(2012)
J Exp Clin Cancer Res.
, vol.31
, pp. 38
-
-
Ma, R.1
Jiang, T.2
Kang, X.3
-
15
-
-
78650842745
-
MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer
-
Chen Y, Zaman MS, Deng G, Majid S, Saini S, Liu J, et al. MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer. Cancer Prev Res (Phila). 2011;4(1): 76-86.
-
(2011)
Cancer Prev Res (Phila).
, vol.4
, Issue.1
, pp. 76-86
-
-
Chen, Y.1
Zaman, M.S.2
Deng, G.3
Majid, S.4
Saini, S.5
Liu, J.6
-
16
-
-
79951828224
-
MiR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation
-
Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, et al. miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71(4): 1313-24.
-
(2011)
Cancer Res.
, vol.71
, Issue.4
, pp. 1313-1324
-
-
Sun, D.1
Lee, Y.S.2
Malhotra, A.3
Kim, H.K.4
Matecic, M.5
Evans, C.6
-
17
-
-
79952205258
-
Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells
-
Ostling P, Leivonen SK, Aakula A, Kohonen P, Makela R, Hagman Z, et al. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res. 2011;71(5): 1956-67.
-
(2011)
Cancer Res.
, vol.71
, Issue.5
, pp. 1956-1967
-
-
Ostling, P.1
Leivonen, S.K.2
Aakula, A.3
Kohonen, P.4
Makela, R.5
Hagman, Z.6
-
19
-
-
84864877232
-
Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer
-
Shen J, Hruby GW, McKiernan JM, Gurvich I, Lipsky MJ, Benson MC, et al. Dysregulation of circulating microRNAs and prediction of aggressive prostate cancer. Prostate. 2012;72(13): 1469-77.
-
(2012)
Prostate.
, vol.72
, Issue.13
, pp. 1469-1477
-
-
Shen, J.1
Hruby, G.W.2
McKiernan, J.M.3
Gurvich, I.4
Lipsky, M.J.5
Benson, M.C.6
-
20
-
-
84908205511
-
Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells
-
He JH, Zhang JZ, Han ZP, Wang L, Lv Y, Li YG. Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. J Exp Clin Cancer Res. 2014;33(1): 72.
-
(2014)
J Exp Clin Cancer Res.
, vol.33
, Issue.1
, pp. 72
-
-
He, J.H.1
Zhang, J.Z.2
Han, Z.P.3
Wang, L.4
Lv, Y.5
Li, Y.G.6
-
21
-
-
84883793490
-
MiR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCalpha
-
Wang C, Wang X, Liang H, Wang T, Yan X, Cao M, et al. miR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCalpha. PLoS One. 2013;8(9): E73985.
-
(2013)
PLoS One.
, vol.8
, Issue.9
, pp. e73985
-
-
Wang, C.1
Wang, X.2
Liang, H.3
Wang, T.4
Yan, X.5
Cao, M.6
-
22
-
-
84887478941
-
MicroRNA 203 modulates glioma cell migration via Robo1/ERK/MMP-9 Signaling
-
Dontula R, Dinasarapu A, Chetty C, Pannuru P, Herbert E, Ozer H, et al. MicroRNA 203 modulates glioma cell migration via Robo1/ERK/MMP-9 Signaling. Genes Cancer. 2013;4(7-8): 285-96.
-
(2013)
Genes Cancer.
, vol.4
, Issue.7-8
, pp. 285-296
-
-
Dontula, R.1
Dinasarapu, A.2
Chetty, C.3
Pannuru, P.4
Herbert, E.5
Ozer, H.6
-
23
-
-
84876177069
-
Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate
-
Li Y, Yuan Y, Tao K, Wang X, Xiao Q, Huang Z, et al. Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate. PLoS One. 2013;8(4): E61858.
-
(2013)
PLoS One.
, vol.8
, Issue.4
, pp. e61858
-
-
Li, Y.1
Yuan, Y.2
Tao, K.3
Wang, X.4
Xiao, Q.5
Huang, Z.6
-
24
-
-
84883645909
-
A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells
-
Yin J, Zheng G, Jia X, Zhang Z, Zhang W, Song Y, et al. A Bmi1-miRNAs cross-talk modulates chemotherapy response to 5-fluorouracil in breast cancer cells. PLoS One. 2013;8(9): E73268.
-
(2013)
PLoS One.
, vol.8
, Issue.9
, pp. e73268
-
-
Yin, J.1
Zheng, G.2
Jia, X.3
Zhang, Z.4
Zhang, W.5
Song, Y.6
-
25
-
-
40749111551
-
A skin microRNA promotes differentiation by repressing 'stemness'
-
Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature. 2008;452(7184): 225-9.
-
(2008)
Nature.
, vol.452
, Issue.7184
, pp. 225-229
-
-
Yi, R.1
Poy, M.N.2
Stoffel, M.3
Fuchs, E.4
-
26
-
-
84857411956
-
Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity
-
Ru P, Steele R, Hsueh EC, Ray RB. Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer. 2011;2(7): 720-7.
-
(2011)
Genes Cancer.
, vol.2
, Issue.7
, pp. 720-727
-
-
Ru, P.1
Steele, R.2
Hsueh, E.C.3
Ray, R.B.4
-
27
-
-
44449149903
-
Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression
-
Bueno MJ, Perez DCI, Gomez DCM, Santos J, Calin GA, Cigudosa JC, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6): 496-506.
-
(2008)
Cancer Cell.
, vol.13
, Issue.6
, pp. 496-506
-
-
Bueno, M.J.1
Perez, D.C.I.2
Gomez, D.C.M.3
Santos, J.4
Calin, G.A.5
Cigudosa, J.C.6
-
28
-
-
79953649060
-
MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines
-
Viticchie G, Lena AM, Latina A, Formosa A, Gregersen LH, Lund AH, et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle. 2011;10(7): 1121-31.
-
(2011)
Cell Cycle.
, vol.10
, Issue.7
, pp. 1121-1131
-
-
Viticchie, G.1
Lena, A.M.2
Latina, A.3
Formosa, A.4
Gregersen, L.H.5
Lund, A.H.6
-
29
-
-
80051697939
-
Regulatory role of mir-203 in prostate cancer progression and metastasis
-
Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V, et al. Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011;17(16): 5287-98.
-
(2011)
Clin Cancer Res.
, vol.17
, Issue.16
, pp. 5287-5298
-
-
Saini, S.1
Majid, S.2
Yamamura, S.3
Tabatabai, L.4
Suh, S.O.5
Shahryari, V.6
-
30
-
-
84872619333
-
MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma
-
Boll K, Reiche K, Kasack K, Morbt N, Kretzschmar AK, Tomm JM, et al. MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene. 2013;32(3): 277-85.
-
(2013)
Oncogene.
, vol.32
, Issue.3
, pp. 277-285
-
-
Boll, K.1
Reiche, K.2
Kasack, K.3
Morbt, N.4
Kretzschmar, A.K.5
Tomm, J.M.6
-
31
-
-
0024263345
-
A novel small molecular weight GTP-binding protein with the same putative effector domain as the ras proteins in bovine brain membranes. Purification, determination of primary structure, and characterization
-
Kawata M, Matsui Y, Kondo J, Hishida T, Teranishi Y, Takai Y. A novel small molecular weight GTP-binding protein with the same putative effector domain as the ras proteins in bovine brain membranes. Purification, determination of primary structure, and characterization. J Biol Chem. 1988;263(35): 18965-71.
-
(1988)
J Biol Chem.
, vol.263
, Issue.35
, pp. 18965-18971
-
-
Kawata, M.1
Matsui, Y.2
Kondo, J.3
Hishida, T.4
Teranishi, Y.5
Takai, Y.6
-
32
-
-
0042490495
-
RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1
-
Katagiri K, Maeda A, Shimonaka M, Kinashi T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol. 2003;4(8): 741-8.
-
(2003)
Nat Immunol.
, vol.4
, Issue.8
, pp. 741-748
-
-
Katagiri, K.1
Maeda, A.2
Shimonaka, M.3
Kinashi, T.4
-
33
-
-
15044359236
-
Linking Rap to cell adhesion
-
Bos JL. Linking Rap to cell adhesion. Curr Opin Cell Biol. 2005;17(2): 123-8.
-
(2005)
Curr Opin Cell Biol.
, vol.17
, Issue.2
, pp. 123-128
-
-
Bos, J.L.1
-
34
-
-
14244260906
-
Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes
-
Fujita H, Fukuhara S, Sakurai A, Yamagishi A, Kamioka Y, Nakaoka Y, et al. Local activation of Rap1 contributes to directional vascular endothelial cell migration accompanied by extension of microtubules on which RAPL, a Rap1-associating molecule, localizes. J Biol Chem. 2005;280(6): 5022-31.
-
(2005)
J Biol Chem.
, vol.280
, Issue.6
, pp. 5022-5031
-
-
Fujita, H.1
Fukuhara, S.2
Sakurai, A.3
Yamagishi, A.4
Kamioka, Y.5
Nakaoka, Y.6
-
35
-
-
0034619762
-
Rap1A protein interferes with various MAP kinase activating pathways in skeletal myogenic cells
-
Pizon V, Baldacci G. Rap1A protein interferes with various MAP kinase activating pathways in skeletal myogenic cells. Oncogene. 2000;19(52): 6074-81.
-
(2000)
Oncogene.
, vol.19
, Issue.52
, pp. 6074-6081
-
-
Pizon, V.1
Baldacci, G.2
-
36
-
-
84862501903
-
MiR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers
-
Du L, Subauste MC, DeSevo C, Zhao Z, Baker M, Borkowski R, et al. miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers. PLoS One. 2012;7(6): E39167.
-
(2012)
PLoS One
, vol.7
, Issue.6
, pp. e39167
-
-
Du, L.1
Subauste, M.C.2
DeSevo, C.3
Zhao, Z.4
Baker, M.5
Borkowski, R.6
-
37
-
-
67449124367
-
Activation of Rap1 promotes prostate cancer metastasis
-
Bailey CL, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 2009;69(12): 4962-8.
-
(2009)
Cancer Res.
, vol.69
, Issue.12
, pp. 4962-4968
-
-
Bailey, C.L.1
Kelly, P.2
Casey, P.J.3
-
38
-
-
84881027752
-
The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas
-
Koontongkaew S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. J Cancer. 2013;4(1): 66-83.
-
(2013)
J Cancer.
, vol.4
, Issue.1
, pp. 66-83
-
-
Koontongkaew, S.1
-
39
-
-
84858309804
-
Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins
-
Bendas G, Borsig L. Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012: 676731.
-
(2012)
Int J Cell Biol.
, vol.2012
, pp. 676731
-
-
Bendas, G.1
Borsig, L.2
|