메뉴 건너뛰기




Volumn 147, Issue 1, 2015, Pages 239-250

Port throughput forecasting by MARS-RSVR with chaotic simulated annealing particle swarm optimization algorithm

Author keywords

Chaotic mapping; Forecasting; Particle swarm optimization (PSO); Port throughput; Robust v support vector regression (RSVR); Simulated annealing (SA)

Indexed keywords

ALGORITHMS; ECONOMICS; FORECASTING; MULTIVARIABLE SYSTEMS; OPTIMIZATION; REGRESSION ANALYSIS; SIMULATED ANNEALING; THROUGHPUT; VECTORS;

EID: 84924045538     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.06.070     Document Type: Article
Times cited : (74)

References (70)
  • 2
    • 84984526179 scopus 로고
    • Tourism forecasting: a review of empirical research
    • Sheldon P.J., Var T. Tourism forecasting: a review of empirical research. J. Forecast. 1985, 4:183-195.
    • (1985) J. Forecast. , vol.4 , pp. 183-195
    • Sheldon, P.J.1    Var, T.2
  • 4
    • 84875516933 scopus 로고    scopus 로고
    • Grey prediction of port throughput based on GM(1,1,a) model
    • Jiang F., Lei K. Grey prediction of port throughput based on GM(1,1,a) model. Logistics Sci-Tech. 2009, 9:68-70.
    • (2009) Logistics Sci-Tech. , vol.9 , pp. 68-70
    • Jiang, F.1    Lei, K.2
  • 5
    • 84924049414 scopus 로고    scopus 로고
    • Empirical study of an intermix algorithm for forecasting port throughput
    • Jiang X.L., WU Y.Q., Shi Y.J. Empirical study of an intermix algorithm for forecasting port throughput. China Harbour Eng. 2009, 2:7-11.
    • (2009) China Harbour Eng. , vol.2 , pp. 7-11
    • Jiang, X.L.1    Wu, Y.Q.2    Shi, Y.J.3
  • 6
    • 84924070051 scopus 로고    scopus 로고
    • China's port throughput of iron ore forecast based on cubic exponential smoothing method
    • 191-192,229
    • Chen G., Lei L., Zou H. China's port throughput of iron ore forecast based on cubic exponential smoothing method. Econ. Res. Guide 2012, 4:191-192,229.
    • (2012) Econ. Res. Guide , vol.4
    • Chen, G.1    Lei, L.2    Zou, H.3
  • 7
    • 84924064793 scopus 로고    scopus 로고
    • Research on combined forecasting model in the container throughput forecasting of Ningbo port
    • Zhang W.P. Research on combined forecasting model in the container throughput forecasting of Ningbo port. Bull. Sci. Technol. 2012, 28(5):133-136.
    • (2012) Bull. Sci. Technol. , vol.28 , Issue.5 , pp. 133-136
    • Zhang, W.P.1
  • 8
    • 70049111206 scopus 로고    scopus 로고
    • A BP neural network method for short-term traffic flow forecasting on crossroads
    • Shang N., Qin M., Wang Y., Cui Z., Cui Y., Zhu Y. A BP neural network method for short-term traffic flow forecasting on crossroads. Comput. Appl. Softw. 2006, 23(2):33-35.
    • (2006) Comput. Appl. Softw. , vol.23 , Issue.2 , pp. 33-35
    • Shang, N.1    Qin, M.2    Wang, Y.3    Cui, Z.4    Cui, Y.5    Zhu, Y.6
  • 9
    • 78649555035 scopus 로고    scopus 로고
    • Neural network short-term traffic flow forecasting model based on particle swarm optimization
    • Ye Y., Lu Z. Neural network short-term traffic flow forecasting model based on particle swarm optimization. Comput. Eng. Des. 2009, 30(18):4296-4299.
    • (2009) Comput. Eng. Des. , vol.30 , Issue.18 , pp. 4296-4299
    • Ye, Y.1    Lu, Z.2
  • 10
    • 70049098598 scopus 로고    scopus 로고
    • Multi-population genetic neural network model for short-term traffic flow prediction at intersections
    • Liu H., Zhou C., Zhu A., Li L. Multi-population genetic neural network model for short-term traffic flow prediction at intersections. Acta Geod. Cartogr. Sin. 2009, 38(4):364-368.
    • (2009) Acta Geod. Cartogr. Sin. , vol.38 , Issue.4 , pp. 364-368
    • Liu, H.1    Zhou, C.2    Zhu, A.3    Li, L.4
  • 12
    • 84924045689 scopus 로고    scopus 로고
    • The port throughput forecast model based on the BP neural network
    • Liu M.L., Zhu M.H. The port throughput forecast model based on the BP neural network. J. Syst. Sci. 2012, 20(4):88-91.
    • (2012) J. Syst. Sci. , vol.20 , Issue.4 , pp. 88-91
    • Liu, M.L.1    Zhu, M.H.2
  • 13
    • 84924079481 scopus 로고    scopus 로고
    • Harbor cargo throughput forecast based on BP neural network and PCA
    • Mu J.P., Li J., Zhang M. Harbor cargo throughput forecast based on BP neural network and PCA. Tech. Method 2012, 31(19):79-82.
    • (2012) Tech. Method , vol.31 , Issue.19 , pp. 79-82
    • Mu, J.P.1    Li, J.2    Zhang, M.3
  • 14
    • 0034822542 scopus 로고    scopus 로고
    • Nonlinear modeling and support vector machines
    • in: Proceedings of IEEE Instrumentation and Measurement Technology Conference
    • J.A.K. Suykens, Nonlinear modeling and support vector machines, in: Proceedings of IEEE Instrumentation and Measurement Technology Conference, 2001, pp. 87-294.
    • (2001) , pp. 87-294
    • Suykens, J.A.K.1
  • 15
    • 34250877385 scopus 로고    scopus 로고
    • A robust shot transition detection method based on support vector machine in compressed domain
    • Cao J., Cai A. A robust shot transition detection method based on support vector machine in compressed domain. Patt. Recognit. Lett. 2007, 28(12):1534-1540.
    • (2007) Patt. Recognit. Lett. , vol.28 , Issue.12 , pp. 1534-1540
    • Cao, J.1    Cai, A.2
  • 16
    • 84887252594 scopus 로고    scopus 로고
    • Support vector machine for function approximation regression estimation and signal processing
    • Vapnik V., Golowich S., Smola A. Support vector machine for function approximation regression estimation and signal processing. Adv. Neural. Inf. Process. Syst. 1996, 9:281-287.
    • (1996) Adv. Neural. Inf. Process. Syst. , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 17
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machine experts for time series forecasting
    • Cao L. Support vector machine experts for time series forecasting. Neurocomputing 2003, 51:321-339.
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 18
    • 13544267510 scopus 로고    scopus 로고
    • Forecasting stock market movement direction with support vector machine
    • Huang W., Nakamori Y., Wang S.Y. Forecasting stock market movement direction with support vector machine. Comput. Oper. Res. 2005, 32:2513-2522.
    • (2005) Comput. Oper. Res. , vol.32 , pp. 2513-2522
    • Huang, W.1    Nakamori, Y.2    Wang, S.Y.3
  • 19
    • 77149138054 scopus 로고    scopus 로고
    • Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting
    • Hung W.M., Hong W.C. Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting. Control Cybern. 2009, 38:863-891.
    • (2009) Control Cybern. , vol.38 , pp. 863-891
    • Hung, W.M.1    Hong, W.C.2
  • 20
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • Pai P.F., Lin C.S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33:497-505.
    • (2005) Omega , vol.33 , pp. 497-505
    • Pai, P.F.1    Lin, C.S.2
  • 21
    • 33745056237 scopus 로고    scopus 로고
    • A hybrid support vector machine regression for exchange rate prediction
    • Pai P.F., Lin C.S., Hong W.C., Chen C.T. A hybrid support vector machine regression for exchange rate prediction. Int. J. Inf. Manag. Sci. 2006, 17:19-32.
    • (2006) Int. J. Inf. Manag. Sci. , vol.17 , pp. 19-32
    • Pai, P.F.1    Lin, C.S.2    Hong, W.C.3    Chen, C.T.4
  • 22
    • 78751627947 scopus 로고    scopus 로고
    • SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
    • Hong W.C., Dong Y., Chen L.Y., Wei S.Y. SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl. Soft Comput. 2011, 11:1881-1890.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1881-1890
    • Hong, W.C.1    Dong, Y.2    Chen, L.Y.3    Wei, S.Y.4
  • 23
    • 27744588529 scopus 로고    scopus 로고
    • An improved neural network model in forecasting arrivals
    • Pai P.F., Hong W.C. An improved neural network model in forecasting arrivals. Ann. Tour. Res. 2005, 32:1138-1141.
    • (2005) Ann. Tour. Res. , vol.32 , pp. 1138-1141
    • Pai, P.F.1    Hong, W.C.2
  • 24
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • Hong W.C. Rainfall forecasting by technological machine learning models. Appl. Math. Comput. 2008, 200:41-57.
    • (2008) Appl. Math. Comput. , vol.200 , pp. 41-57
    • Hong, W.C.1
  • 25
    • 33846428782 scopus 로고    scopus 로고
    • Potential assessment of the support vector regression technique in rainfall forecasting
    • Hong W.C., Pai P.F. Potential assessment of the support vector regression technique in rainfall forecasting. Water Resour. Manag. 2007, 21:495-513.
    • (2007) Water Resour. Manag. , vol.21 , pp. 495-513
    • Hong, W.C.1    Pai, P.F.2
  • 26
    • 33947537723 scopus 로고    scopus 로고
    • A recurrent support vector regression model in rainfall forecasting
    • Pai P.F., Hong W.C. A recurrent support vector regression model in rainfall forecasting. Hydrol. Process. 2007, 21:819-827.
    • (2007) Hydrol. Process. , vol.21 , pp. 819-827
    • Pai, P.F.1    Hong, W.C.2
  • 28
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107.
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.C.1
  • 29
    • 79952362137 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR traffic flow forecasting model
    • Hong W.C., Dong Y., Zheng F., Wei S.Y. Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl. Math. Comput. 2011, 217:6733-6747.
    • (2011) Appl. Math. Comput. , vol.217 , pp. 6733-6747
    • Hong, W.C.1    Dong, Y.2    Zheng, F.3    Wei, S.Y.4
  • 30
    • 78549267441 scopus 로고    scopus 로고
    • Forecasting urban traffic flow by SVR with continuous ACO
    • Hong W.C., Dong Y., Zheng F., Lai C.Y. Forecasting urban traffic flow by SVR with continuous ACO. Appl. Math. Model. 2011, 35:1282-1291.
    • (2011) Appl. Math. Model. , vol.35 , pp. 1282-1291
    • Hong, W.C.1    Dong, Y.2    Zheng, F.3    Lai, C.Y.4
  • 31
    • 67650639040 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR-based electric load forecasting model
    • Hong W.C. Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int. J. Electr. Power Energy Syst. 2009, 31:409-417.
    • (2009) Int. J. Electr. Power Energy Syst. , vol.31 , pp. 409-417
    • Hong, W.C.1
  • 32
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • Hong W.C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers. Manag. 2009, 50:105-117.
    • (2009) Energy Convers. Manag. , vol.50 , pp. 105-117
    • Hong, W.C.1
  • 33
    • 58249135669 scopus 로고    scopus 로고
    • Electric load forecasting by support vector model
    • Hong W.C. Electric load forecasting by support vector model. Appl. Math. Model. 2009, 33:2444-2454.
    • (2009) Appl. Math. Model. , vol.33 , pp. 2444-2454
    • Hong, W.C.1
  • 34
    • 77958467490 scopus 로고    scopus 로고
    • Application of chaotic ant swarm optimization in electric load forecasting
    • Hong W.C. Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 2010, 38:5830-5839.
    • (2010) Energy Policy , vol.38 , pp. 5830-5839
    • Hong, W.C.1
  • 35
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electric load based on recurrent support vector machines with genetic algorithms
    • Pai P.F., Hong W.C. Forecasting regional electric load based on recurrent support vector machines with genetic algorithms. Electr. Power Syst. Res. 2005, 74:417-425.
    • (2005) Electr. Power Syst. Res. , vol.74 , pp. 417-425
    • Pai, P.F.1    Hong, W.C.2
  • 36
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai P.F., Hong W.C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers. Manag. 2005, 46:2669-2688.
    • (2005) Energy Convers. Manag. , vol.46 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 37
    • 84924038431 scopus 로고    scopus 로고
    • Application of SVM model in the predication of Harbor handling capacity in Jiujiang
    • Cheng W.Z., Ren f F.X., Zhou X.C. Application of SVM model in the predication of Harbor handling capacity in Jiujiang. Logist. Eng. Manag. 2012, 34(9):61-64.
    • (2012) Logist. Eng. Manag. , vol.34 , Issue.9 , pp. 61-64
    • Cheng, W.Z.1    Ren f, F.X.2    Zhou, X.C.3
  • 38
    • 84867886159 scopus 로고    scopus 로고
    • Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm
    • Li M.W., Hong W.C., Kang H.G. Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm. Neurocomputing 2013, 23(99):230-240.
    • (2013) Neurocomputing , vol.23 , Issue.99 , pp. 230-240
    • Li, M.W.1    Hong, W.C.2    Kang, H.G.3
  • 39
    • 67650082706 scopus 로고    scopus 로고
    • Product sales forecasting model based on robust M-support vector machine
    • Wu Q., Yan H.S. Product sales forecasting model based on robust M-support vector machine. Comput. Integr. Manuf. Syst. 2009, 15(6):1081-1087.
    • (2009) Comput. Integr. Manuf. Syst. , vol.15 , Issue.6 , pp. 1081-1087
    • Wu, Q.1    Yan, H.S.2
  • 40
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electric load based on recurrent support vector machines with genetic algorithms
    • Pai P.F., Hong W.C. Forecasting regional electric load based on recurrent support vector machines with genetic algorithms. Electr. Power Syst. Res. 2005, 74(3):417-425.
    • (2005) Electr. Power Syst. Res. , vol.74 , Issue.3 , pp. 417-425
    • Pai, P.F.1    Hong, W.C.2
  • 41
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVR parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVR parameters and noise estimation for SVM regression. Neural Netw. 2004, 17:113-126.
    • (2004) Neural Netw. , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 42
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedriehs F., Igel C. Evolutionary tuning of multiple SVM parameters. Neural Comput. 2005, 64(1):107-117.
    • (2005) Neural Comput. , vol.64 , Issue.1 , pp. 107-117
    • Friedriehs, F.1    Igel, C.2
  • 43
    • 43749117295 scopus 로고    scopus 로고
    • Parameters election of support vector regression based on hybrid optimization algorithm and its application
    • Wang X., Qin C., Gui W.H. Parameters election of support vector regression based on hybrid optimization algorithm and its application. J. Control Theory Appl. 2005, 3(4):372-376.
    • (2005) J. Control Theory Appl. , vol.3 , Issue.4 , pp. 372-376
    • Wang, X.1    Qin, C.2    Gui, W.H.3
  • 44
    • 0036161011 scopus 로고    scopus 로고
    • Choosing mu1tip1e parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., et al. Choosing mu1tip1e parameters for support vector machines. Mach. Learn. 2002, 46(1):131-159.
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3
  • 45
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out bounds for support vector regression model selection
    • Chang M.W., Lin C.H. Leave-one-out bounds for support vector regression model selection. Neural Comput. 2005, 17(5):1188-1222.
    • (2005) Neural Comput. , vol.17 , Issue.5 , pp. 1188-1222
    • Chang, M.W.1    Lin, C.H.2
  • 46
    • 84968418512 scopus 로고    scopus 로고
    • Power short-term load forecasting based on SA-LSSVM
    • Zhu X.T. Power short-term load forecasting based on SA-LSSVM. Sci. Technol. Eng. 2012, 6171-6174.
    • (2012) Sci. Technol. Eng. , pp. 6171-6174
    • Zhu, X.T.1
  • 47
    • 84878823720 scopus 로고    scopus 로고
    • Steam load forecasting based on chaos theory and LSSVM
    • Zhang H.Q., Zhang X.Y. Steam load forecasting based on chaos theory and LSSVM. Syst. Eng.-Theory & Pract. 2013, 1058-1066.
    • (2013) Syst. Eng.-Theory & Pract. , pp. 1058-1066
    • Zhang, H.Q.1    Zhang, X.Y.2
  • 48
    • 84870626785 scopus 로고    scopus 로고
    • Research on self-adaptive integrated model for short-term load forecasting based on algorithm combination
    • Lu N., Liu Y. Research on self-adaptive integrated model for short-term load forecasting based on algorithm combination. Power Syst. Protect. Control 2012, 109-113.
    • (2012) Power Syst. Protect. Control , pp. 109-113
    • Lu, N.1    Liu, Y.2
  • 49
    • 1342306864 scopus 로고    scopus 로고
    • A symmetric image encryption scheme based on 3D chaotic cat maps
    • Chen G., Mao Y., Chui C.K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004, 21:61-74.
    • (2004) Chaos Solitons Fractals , vol.21 , pp. 61-74
    • Chen, G.1    Mao, Y.2    Chui, C.K.3
  • 50
    • 84878595999 scopus 로고    scopus 로고
    • Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm
    • Li M.W., Kang H.G., Zhou P.H., Hong W.C. Hybrid optimization algorithm based on chaos, cloud and particle swarm optimization algorithm. J. Syst. Eng. Electron. 2013, 24(2):324-334.
    • (2013) J. Syst. Eng. Electron. , vol.24 , Issue.2 , pp. 324-334
    • Li, M.W.1    Kang, H.G.2    Zhou, P.H.3    Hong, W.C.4
  • 51
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman J.H. Multivariate adaptive regression splines (with discussion). Ann. Stat. 1991, 19:1-141.
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 52
    • 84893703920 scopus 로고    scopus 로고
    • Sales forecasting of computer products based on variable selection scheme and support vector regression
    • Lu C.J. Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing 2014, 128:491-499.
    • (2014) Neurocomputing , vol.128 , pp. 491-499
    • Lu, C.J.1
  • 53
    • 60249087645 scopus 로고    scopus 로고
    • Mining the customer credit using hybrid support vector machine technique
    • Chen W., Ma C., Ma L. Mining the customer credit using hybrid support vector machine technique. Expert Syst. Appl. 2009, 36(4):7611-7616.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7611-7616
    • Chen, W.1    Ma, C.2    Ma, L.3
  • 54
    • 26444554549 scopus 로고    scopus 로고
    • Mining the customer credit using classification and regression tree and multivariate adaptive regression splines
    • Lee T.S., Chiu C.C., Chou Y.C., Lu C.J. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal. 2006, 50(4):1113-1130.
    • (2006) Comput. Stat. Data Anal. , vol.50 , Issue.4 , pp. 1113-1130
    • Lee, T.S.1    Chiu, C.C.2    Chou, Y.C.3    Lu, C.J.4
  • 55
    • 33845671851 scopus 로고    scopus 로고
    • A comparative study of data mining methods in consumer loans credit scoring management
    • Xiao W., Zhao Q., Fei Q. A comparative study of data mining methods in consumer loans credit scoring management. J. Syst. Sci. Syst. Eng. 2006, 15(4):419-435.
    • (2006) J. Syst. Sci. Syst. Eng. , vol.15 , Issue.4 , pp. 419-435
    • Xiao, W.1    Zhao, Q.2    Fei, Q.3
  • 56
    • 84870062990 scopus 로고    scopus 로고
    • A new fuzzy functions model tuned by hybridizing imperialist competitive algorithm and simulated annealing, application: stock price prediction
    • Zarandi M.H.F., Zarinbal M., Ghanbari N., Turksen I.B. A new fuzzy functions model tuned by hybridizing imperialist competitive algorithm and simulated annealing, application: stock price prediction. Inf. Sci. 2013, 222:213-228.
    • (2013) Inf. Sci. , vol.222 , pp. 213-228
    • Zarandi, M.H.F.1    Zarinbal, M.2    Ghanbari, N.3    Turksen, I.B.4
  • 57
    • 84875418990 scopus 로고    scopus 로고
    • A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting
    • Kao L.J., Chiu C.C., Lu C.J., Chang C.H. A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting. Decis. Support Syst. 2013, 54(3):1228-1244.
    • (2013) Decis. Support Syst. , vol.54 , Issue.3 , pp. 1228-1244
    • Kao, L.J.1    Chiu, C.C.2    Lu, C.J.3    Chang, C.H.4
  • 58
    • 84885911498 scopus 로고    scopus 로고
    • Incorporating feature selection method into support vector regression for stock index forecasting
    • Dai W., Shao Y.E., Lu C.J. Incorporating feature selection method into support vector regression for stock index forecasting. Neural Comput & Applic. 2013, 23:1551-1561.
    • (2013) Neural Comput & Applic. , vol.23 , pp. 1551-1561
    • Dai, W.1    Shao, Y.E.2    Lu, C.J.3
  • 59
    • 84869413505 scopus 로고    scopus 로고
    • Hybrid intelligent systems for predicting software reliability
    • Mohanty R., Ravi V., Patra M.R. Hybrid intelligent systems for predicting software reliability. Appl. Soft Comput. 2013, 13(1):189-200.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.1 , pp. 189-200
    • Mohanty, R.1    Ravi, V.2    Patra, M.R.3
  • 60
    • 40049088101 scopus 로고    scopus 로고
    • Software reliability prediction by soft computing techniques
    • Raj Kiran N., Ravi V. Software reliability prediction by soft computing techniques. J. Syst. Softw. 2008, 81(4):576-583.
    • (2008) J. Syst. Softw. , vol.81 , Issue.4 , pp. 576-583
    • Raj Kiran, N.1    Ravi, V.2
  • 61
    • 34248571358 scopus 로고    scopus 로고
    • Predicting object-oriented software maintainability using multivariate adaptive regression splines
    • Zhou Y., Leung H. Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst. Softw. 2007, 80(8):1349-1361.
    • (2007) J. Syst. Softw. , vol.80 , Issue.8 , pp. 1349-1361
    • Zhou, Y.1    Leung, H.2
  • 62
    • 33645954864 scopus 로고    scopus 로고
    • Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish
    • Leathwick J.R., Rowe D., Richardson J., et al. Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshw. Biol. 2005, 50(12):2034-2052.
    • (2005) Freshw. Biol. , vol.50 , Issue.12 , pp. 2034-2052
    • Leathwick, J.R.1    Rowe, D.2    Richardson, J.3
  • 63
    • 34247359908 scopus 로고    scopus 로고
    • Predicting species distribution from museum and herbarium records using multiresponse model fitted with multivariate adaptive regression splines
    • Elith J., Leathwick J. Predicting species distribution from museum and herbarium records using multiresponse model fitted with multivariate adaptive regression splines. Divers. Distrib. 2007, 13(3):265-275.
    • (2007) Divers. Distrib. , vol.13 , Issue.3 , pp. 265-275
    • Elith, J.1    Leathwick, J.2
  • 64
    • 37249009707 scopus 로고    scopus 로고
    • A hybrid genetic algorithm and particle swarm optimization for multimodal functions
    • Kao Y., Zahara E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied Soft Computing 2008, 8:849-857.
    • (2008) Applied Soft Computing , vol.8 , pp. 849-857
    • Kao, Y.1    Zahara, E.2
  • 65
  • 66
    • 33645856653 scopus 로고
    • Global optimization and simulated annealing
    • Dekkers A., Aarts E.H.L. Global optimization and simulated annealing. Math. Progr. 1991, 50:367-393.
    • (1991) Math. Progr. , vol.50 , pp. 367-393
    • Dekkers, A.1    Aarts, E.H.L.2
  • 67
    • 0029363582 scopus 로고
    • An introduction to multivariate adaptive regression splines
    • Friedman J.H., Roosen C.B. An introduction to multivariate adaptive regression splines. Statist. Method Med. Res. 1995, 4:197-217.
    • (1995) Statist. Method Med. Res. , vol.4 , pp. 197-217
    • Friedman, J.H.1    Roosen, C.B.2
  • 68
    • 84924021078 scopus 로고    scopus 로고
    • Study on intrinsic factors of port throughput based on principal component analysis
    • Xu J.H., Jin H. Study on intrinsic factors of port throughput based on principal component analysis. Port Waterw. Eng. 2010, 1:2-5.
    • (2010) Port Waterw. Eng. , vol.1 , pp. 2-5
    • Xu, J.H.1    Jin, H.2
  • 69
    • 33744976067 scopus 로고    scopus 로고
    • The impact of preprocessing on data mining: an evaluation of classifier sensitivity in direct marketing
    • Crone S.F., Lessmann S., Stahlbock R. The impact of preprocessing on data mining: an evaluation of classifier sensitivity in direct marketing. Eur. J. Oper. Res. 2006, 173(3):781-800.
    • (2006) Eur. J. Oper. Res. , vol.173 , Issue.3 , pp. 781-800
    • Crone, S.F.1    Lessmann, S.2    Stahlbock, R.3
  • 70
    • 78049300002 scopus 로고    scopus 로고
    • The impact of preprocessing on support vector regression and neural networks in time series prediction
    • in: Proceedings of the International Conference on Data Mining, DMIN'6, Las Vegas, USA
    • S. Crone, J. Guajardo, R. Weber, The impact of preprocessing on support vector regression and neural networks in time series prediction, in: Proceedings of the International Conference on Data Mining, DMIN'06, Las Vegas, USA, 2006, pp. 37-44.
    • (2006) , pp. 37-44
    • Crone, S.1    Guajardo, J.2    Weber, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.