메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 491-499

Sales forecasting of computer products based on variable selection scheme and support vector regression

Author keywords

Computer products; Sales forecasting; Support vector regression; Variable selection

Indexed keywords

COMPUTER PRODUCTS; FORECASTING MODELING; LIQUID CRYSTAL DISPLAY(LCD); PREDICTOR VARIABLES; SALES FORECASTING; SUPPORT VECTOR REGRESSION (SVR); VARIABLE SELECTION; VARIABLE SELECTION METHODS;

EID: 84893703920     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.08.012     Document Type: Article
Times cited : (92)

References (56)
  • 1
    • 33750963656 scopus 로고    scopus 로고
    • Improved supply chain management based on hybrid demand forecasts
    • Aburto L., Weber R. Improved supply chain management based on hybrid demand forecasts. Appl. Soft Comput. 2007, 7(1):136-144.
    • (2007) Appl. Soft Comput. , vol.7 , Issue.1 , pp. 136-144
    • Aburto, L.1    Weber, R.2
  • 2
    • 78049311675 scopus 로고    scopus 로고
    • Sales forecasts in clothing industry: the key success factor of the supply chain management
    • Thomassey S. Sales forecasts in clothing industry: the key success factor of the supply chain management. Int. J. Prod. Econ. 2010, 128(2):470-483.
    • (2010) Int. J. Prod. Econ. , vol.128 , Issue.2 , pp. 470-483
    • Thomassey, S.1
  • 3
    • 78049314546 scopus 로고    scopus 로고
    • A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm
    • Wong W.K., Guo Z.X. A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. Int. J. Prod. Econ. 2010, 128(2):614-624.
    • (2010) Int. J. Prod. Econ. , vol.128 , Issue.2 , pp. 614-624
    • Wong, W.K.1    Guo, Z.X.2
  • 4
    • 78049295934 scopus 로고    scopus 로고
    • Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting
    • Lu C.J., Wang Y.W. Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. Int. J. Prod. Econ. 2010, 128(2):603-613.
    • (2010) Int. J. Prod. Econ. , vol.128 , Issue.2 , pp. 603-613
    • Lu, C.J.1    Wang, Y.W.2
  • 5
    • 84868667879 scopus 로고    scopus 로고
    • Sales forecasting for computer wholesalers: a comparison of multivariate adaptive regression splines and artificial neural networks
    • Lu C.J., Lee T.S., Lian C.M. Sales forecasting for computer wholesalers: a comparison of multivariate adaptive regression splines and artificial neural networks. Decision Support Syst. 2012, 54(1):584-596.
    • (2012) Decision Support Syst. , vol.54 , Issue.1 , pp. 584-596
    • Lu, C.J.1    Lee, T.S.2    Lian, C.M.3
  • 6
    • 76349099154 scopus 로고    scopus 로고
    • A sales forecast model for the german automobile market based on time series analysis and data mining methods
    • LNAI
    • Brühl B., Hülsmann M., Borscheid D., Friedrich C.M., Reith D. A sales forecast model for the german automobile market based on time series analysis and data mining methods. Lect. Notes Comput. Sci. 2009, 5633 LNAI:146-160.
    • (2009) Lect. Notes Comput. Sci. , vol.5633 , pp. 146-160
    • Brühl, B.1    Hülsmann, M.2    Borscheid, D.3    Friedrich, C.M.4    Reith, D.5
  • 7
    • 0142239490 scopus 로고    scopus 로고
    • Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods
    • Alon I., Qi M., Sadowski R.J. Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods. J. Retailing Consum. Serv. 2001, 8(3):147-156.
    • (2001) J. Retailing Consum. Serv. , vol.8 , Issue.3 , pp. 147-156
    • Alon, I.1    Qi, M.2    Sadowski, R.J.3
  • 8
    • 33846297335 scopus 로고    scopus 로고
    • Forecasting with cue information: a comparison of multiple regression with alternative forecasting approaches
    • Nikolopoulos K., Goodwin P., Patelis A., Assimakopoulos V. Forecasting with cue information: a comparison of multiple regression with alternative forecasting approaches. Eur. J. Oper. Res. 2007, 180(1):354-368.
    • (2007) Eur. J. Oper. Res. , vol.180 , Issue.1 , pp. 354-368
    • Nikolopoulos, K.1    Goodwin, P.2    Patelis, A.3    Assimakopoulos, V.4
  • 9
    • 79957601104 scopus 로고    scopus 로고
    • ARIMA models to forecast demand in fresh supply chains
    • Shukla M., Jharkharia S. ARIMA models to forecast demand in fresh supply chains. Int. J. Oper. Res. 2011, 11(1):1-18.
    • (2011) Int. J. Oper. Res. , vol.11 , Issue.1 , pp. 1-18
    • Shukla, M.1    Jharkharia, S.2
  • 10
    • 23944481144 scopus 로고    scopus 로고
    • Incorporating cannibalization models into demand forecasting
    • Srinivasan S.R., Ramakrishnan S., Grasman S.E. Incorporating cannibalization models into demand forecasting. Mark. Intell. Plann. 2005, 23(5):470-485.
    • (2005) Mark. Intell. Plann. , vol.23 , Issue.5 , pp. 470-485
    • Srinivasan, S.R.1    Ramakrishnan, S.2    Grasman, S.E.3
  • 11
    • 0035360802 scopus 로고    scopus 로고
    • Applied hybrid grey model to forecast seasonal time series
    • Tseng F.M., Yu H.C., Tzeng G.H. Applied hybrid grey model to forecast seasonal time series. Technol. Forecast. Soc. Change 2001, 67(2-3):291-302.
    • (2001) Technol. Forecast. Soc. Change , vol.67 , Issue.2-3 , pp. 291-302
    • Tseng, F.M.1    Yu, H.C.2    Tzeng, G.H.3
  • 13
    • 34249301767 scopus 로고    scopus 로고
    • A neural clustering and classification system for sales forecasting of new apparel items
    • Thomassey S., Happiette M. A neural clustering and classification system for sales forecasting of new apparel items. Appl. Soft Comput. 2007, 7(4):1177-1187.
    • (2007) Appl. Soft Comput. , vol.7 , Issue.4 , pp. 1177-1187
    • Thomassey, S.1    Happiette, M.2
  • 14
    • 67349144155 scopus 로고    scopus 로고
    • Data clustering and fuzzy neural network for sales forecasting: a case study in printed circuit board industry
    • Chang P.C., Liu C.H., Fan C.Y. Data clustering and fuzzy neural network for sales forecasting: a case study in printed circuit board industry. Knowl.-Based Syst. 2009, 22(5):344-355.
    • (2009) Knowl.-Based Syst. , vol.22 , Issue.5 , pp. 344-355
    • Chang, P.C.1    Liu, C.H.2    Fan, C.Y.3
  • 15
    • 84867873323 scopus 로고    scopus 로고
    • Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs
    • Xia M., Zhang Y., Weng L., Ye X. Fashion retailing forecasting based on extreme learning machine with adaptive metrics of inputs. Knowl.-Based Syst. 2012, 36:253-259.
    • (2012) Knowl.-Based Syst. , vol.36 , pp. 253-259
    • Xia, M.1    Zhang, Y.2    Weng, L.3    Ye, X.4
  • 16
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • Sun Z.L., Choi T.M., Au K.F., Yu Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Syst. 2008, 46(1):411-419.
    • (2008) Decision Support Syst. , vol.46 , Issue.1 , pp. 411-419
    • Sun, Z.L.1    Choi, T.M.2    Au, K.F.3    Yu, Y.4
  • 18
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B. A tutorial on support vector regression. Stat. Comput. 2004, 14(3):199-222.
    • (2004) Stat. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 20
    • 67650639040 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR-based electric load forecasting model
    • Hong W.C. Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int. J. Electr. Power Energy Syst. 2009, 31(7-8):409-417.
    • (2009) Int. J. Electr. Power Energy Syst. , vol.31 , Issue.7-8 , pp. 409-417
    • Hong, W.C.1
  • 21
    • 84867886159 scopus 로고    scopus 로고
    • Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm
    • Li M.W., Hong W.C., Kang H.G. Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm. Neurocomputing 2013, 99:230-240.
    • (2013) Neurocomputing , vol.99 , pp. 230-240
    • Li, M.W.1    Hong, W.C.2    Kang, H.G.3
  • 22
    • 84858160566 scopus 로고    scopus 로고
    • Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting
    • Hong W.C. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput. & Appl. 2012, 21(3):583-593.
    • (2012) Neural Comput. & Appl. , vol.21 , Issue.3 , pp. 583-593
    • Hong, W.C.1
  • 23
    • 64949130686 scopus 로고    scopus 로고
    • Financial time series forecasting using independent component analysis and support vector regression
    • Lu C.J., Lee T.S., Chiu C.C. Financial time series forecasting using independent component analysis and support vector regression. Decision Support Syst. 2009, 47(2):115-125.
    • (2009) Decision Support Syst. , vol.47 , Issue.2 , pp. 115-125
    • Lu, C.J.1    Lee, T.S.2    Chiu, C.C.3
  • 24
    • 84867889577 scopus 로고    scopus 로고
    • Integration of nonlinear independent component analysis and support vector regression for stock price forecasting
    • Kao L.J., Chiu C.C., Lu C.J., Yang J.L. Integration of nonlinear independent component analysis and support vector regression for stock price forecasting. Neurocomputing 2013, 99:534-542.
    • (2013) Neurocomputing , vol.99 , pp. 534-542
    • Kao, L.J.1    Chiu, C.C.2    Lu, C.J.3    Yang, J.L.4
  • 25
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Tay F.E.H., Cao L.J. Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Networks 2003, 14:1506-1518.
    • (2003) IEEE Trans. Neural Networks , vol.14 , pp. 1506-1518
    • Tay, F.E.H.1    Cao, L.J.2
  • 26
    • 77958505860 scopus 로고    scopus 로고
    • A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems
    • Bahrammirzaee A. A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput. & Appl. 2010, 19(8):1165-1195.
    • (2010) Neural Comput. & Appl. , vol.19 , Issue.8 , pp. 1165-1195
    • Bahrammirzaee, A.1
  • 27
    • 84870610658 scopus 로고    scopus 로고
    • Demand forecasting of perishable farm products using support vector machine
    • Du X.F., Leung S.C.H., Zhang J.L., Lai K.K. Demand forecasting of perishable farm products using support vector machine. Int. J. Syst. Sci. 2013, 44(3):556-567.
    • (2013) Int. J. Syst. Sci. , vol.44 , Issue.3 , pp. 556-567
    • Du, X.F.1    Leung, S.C.H.2    Zhang, J.L.3    Lai, K.K.4
  • 28
    • 37549023479 scopus 로고    scopus 로고
    • SVR mathematical model and methods for sale prediction
    • Yang Y., Fuli R., Huiyou C., Zhijiao X. SVR mathematical model and methods for sale prediction. J. Syst. Eng. Electron. 2007, 18(4):769-773.
    • (2007) J. Syst. Eng. Electron. , vol.18 , Issue.4 , pp. 769-773
    • Yang, Y.1    Fuli, R.2    Huiyou, C.3    Zhijiao, X.4
  • 29
    • 60249083637 scopus 로고    scopus 로고
    • The forecasting model based on wavelet ν-support vector machine
    • Wu Q. The forecasting model based on wavelet ν-support vector machine. Expert Syst. Appl. 2009, 36(4):7604-7610.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7604-7610
    • Wu, Q.1
  • 30
    • 77249157692 scopus 로고    scopus 로고
    • Taiwanese 3G mobile phone demand forecasting by SVR with hybrid evolutionary algorithms
    • Hong W.C., Dong Y., Chen L.Y., Lai C.Y. Taiwanese 3G mobile phone demand forecasting by SVR with hybrid evolutionary algorithms. Expert Syst. Appl. 2010, 37(6):4452-4462.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.6 , pp. 4452-4462
    • Hong, W.C.1    Dong, Y.2    Chen, L.Y.3    Lai, C.Y.4
  • 31
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman J.H. Multivariate adaptive regression splines (with discussion). Ann. Stat. 1991, 19:1-141.
    • (1991) Ann. Stat. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 32
    • 58649083226 scopus 로고    scopus 로고
    • Multi-step ahead forecasts for electricity prices using NARX: a new approach, a critical analysis of one-step ahead forecasts
    • Andalib A., Atry F. Multi-step ahead forecasts for electricity prices using NARX: a new approach, a critical analysis of one-step ahead forecasts. Energy Convers. Manage. 2009, 50(3):739-747.
    • (2009) Energy Convers. Manage. , vol.50 , Issue.3 , pp. 739-747
    • Andalib, A.1    Atry, F.2
  • 33
    • 84870062990 scopus 로고    scopus 로고
    • A new fuzzy functions model tuned by hybridizing imperialist competitive algorithm and simulated annealing. Application: stock price prediction
    • Zarandi M.H.F., Zarinbal M., Ghanbari N., Turksen I.B. A new fuzzy functions model tuned by hybridizing imperialist competitive algorithm and simulated annealing. Application: stock price prediction. Inf. Sci. 2013, 222:213-228.
    • (2013) Inf. Sci. , vol.222 , pp. 213-228
    • Zarandi, M.H.F.1    Zarinbal, M.2    Ghanbari, N.3    Turksen, I.B.4
  • 34
    • 84875418990 scopus 로고    scopus 로고
    • A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting
    • Kao L.J., Chiu C.C., Lu C.J., Chang C.H. A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting. Decision Support Syst. 2013, 54(3):1228-1244.
    • (2013) Decision Support Syst. , vol.54 , Issue.3 , pp. 1228-1244
    • Kao, L.J.1    Chiu, C.C.2    Lu, C.J.3    Chang, C.H.4
  • 35
    • 84885911498 scopus 로고    scopus 로고
    • Incorporating feature selection method into support vector regression for stock index forecasting
    • Dai W., Shao Y.E., Lu C.J. Incorporating feature selection method into support vector regression for stock index forecasting. Neural Comput. & Appl. 2013, 26(3):1551-1561.
    • (2013) Neural Comput. & Appl. , vol.26 , Issue.3 , pp. 1551-1561
    • Dai, W.1    Shao, Y.E.2    Lu, C.J.3
  • 36
    • 60249087645 scopus 로고    scopus 로고
    • Mining the customer credit using hybrid support vector machine technique
    • Chen W., Ma C., Ma L. Mining the customer credit using hybrid support vector machine technique. Expert Syst. Appl. 2009, 36(4):7611-7616.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7611-7616
    • Chen, W.1    Ma, C.2    Ma, L.3
  • 37
    • 26444554549 scopus 로고    scopus 로고
    • Mining the customer credit using classification and regression tree and multivariate adaptive regression splines
    • Lee T.S., Chiu C.C., Chou Y.C., Lu C.J. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Comput. Stat. Data Anal. 2006, 50(4):1113-1130.
    • (2006) Comput. Stat. Data Anal. , vol.50 , Issue.4 , pp. 1113-1130
    • Lee, T.S.1    Chiu, C.C.2    Chou, Y.C.3    Lu, C.J.4
  • 38
    • 33845671851 scopus 로고    scopus 로고
    • A comparative study of data mining methods in consumer loans credit scoring management
    • Xiao W., Zhao Q., Fei Q. A comparative study of data mining methods in consumer loans credit scoring management. J. Syst. Sci. Syst. Eng. 2006, 15(4):419-435.
    • (2006) J. Syst. Sci. Syst. Eng. , vol.15 , Issue.4 , pp. 419-435
    • Xiao, W.1    Zhao, Q.2    Fei, Q.3
  • 39
    • 84869413505 scopus 로고    scopus 로고
    • Hybrid intelligent systems for predicting software reliability
    • Mohanty R., Ravi V., Patra M.R. Hybrid intelligent systems for predicting software reliability. Appl. Soft Comput. 2013, 13(1):189-200.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.1 , pp. 189-200
    • Mohanty, R.1    Ravi, V.2    Patra, M.R.3
  • 40
    • 40049088101 scopus 로고    scopus 로고
    • Software reliability prediction by soft computing techniques
    • Raj Kiran N., Ravi V. Software reliability prediction by soft computing techniques. J. Syst. Software 2008, 81(4):576-583.
    • (2008) J. Syst. Software , vol.81 , Issue.4 , pp. 576-583
    • Raj Kiran, N.1    Ravi, V.2
  • 41
    • 34248571358 scopus 로고    scopus 로고
    • Predicting object-oriented software maintainability using multivariate adaptive regression splines
    • Zhou Y., Leung H. Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst. Software 2007, 80(8):1349-1361.
    • (2007) J. Syst. Software , vol.80 , Issue.8 , pp. 1349-1361
    • Zhou, Y.1    Leung, H.2
  • 42
    • 78049481395 scopus 로고    scopus 로고
    • Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches
    • Tsai C.F., Hsiao Y.C. Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches. Decision Support Syst. 2010, 50(1):258-269.
    • (2010) Decision Support Syst. , vol.50 , Issue.1 , pp. 258-269
    • Tsai, C.F.1    Hsiao, Y.C.2
  • 43
    • 0345019845 scopus 로고    scopus 로고
    • Genetic algorithms applied to feature selection in PLS regression: how and when to use them
    • Leardi R., Lupiáñez González A. Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometrics Intell. Lab. Syst. 1998, 41(2):195-207.
    • (1998) Chemometrics Intell. Lab. Syst. , vol.41 , Issue.2 , pp. 195-207
    • Leardi, R.1    Lupiáñez González, A.2
  • 44
    • 34548229095 scopus 로고    scopus 로고
    • Variable selection in regression models using nonstandard optimisation of information criteria
    • Kapetanios G. Variable selection in regression models using nonstandard optimisation of information criteria. Comput. Stat. Data Anal. 2007, 52(1):4-15.
    • (2007) Comput. Stat. Data Anal. , vol.52 , Issue.1 , pp. 4-15
    • Kapetanios, G.1
  • 45
    • 78650649260 scopus 로고    scopus 로고
    • Variable selection in regression-a tutorial
    • Andersen C.M., Bro R. Variable selection in regression-a tutorial. J. Chemometrics 24(11-12) 2010, 24(11-12):728-737.
    • (2010) J. Chemometrics 24(11-12) , vol.24 , Issue.11-12 , pp. 728-737
    • Andersen, C.M.1    Bro, R.2
  • 46
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V.N. An overview of statistical learning theory. IEEE Trans. Neural Networks 1999, 10:988-999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 47
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 48
    • 9244248635 scopus 로고    scopus 로고
    • Forecasting the New York stock exchange composite index with past price and interest rate on condition of volume spike
    • Leigh W., Hightower R., Modani N. Forecasting the New York stock exchange composite index with past price and interest rate on condition of volume spike. Expert Syst. Appl. 2005, 28:1-8.
    • (2005) Expert Syst. Appl. , vol.28 , pp. 1-8
    • Leigh, W.1    Hightower, R.2    Modani, N.3
  • 50
    • 33744976067 scopus 로고    scopus 로고
    • The impact of preprocessing on data mining: an evaluation of classifier sensitivity in direct marketing
    • Crone S.F., Lessmann S., Stahlbock R. The impact of preprocessing on data mining: an evaluation of classifier sensitivity in direct marketing. Eur. J. Oper. Res. 2006, 173(3):781-800.
    • (2006) Eur. J. Oper. Res. , vol.173 , Issue.3 , pp. 781-800
    • Crone, S.F.1    Lessmann, S.2    Stahlbock, R.3
  • 51
    • 78049300002 scopus 로고    scopus 로고
    • The impact of preprocessing on support vector regression and neural networks in time series prediction
    • Proceedings of the International Conference on Data Mining, DMIN'06, Las Vegas, USA
    • S. Crone, J. Guajardo, R. Weber, The impact of preprocessing on support vector regression and neural networks in time series prediction, in: Proceedings of the International Conference on Data Mining, DMIN'06, Las Vegas, USA, 2006, pp. 37-44.
    • (2006) , pp. 37-44
    • Crone, S.1    Guajardo, J.2    Weber, R.3
  • 52
    • 84893665710 scopus 로고    scopus 로고
    • Salford Systems, MARS 2.0-for windows 95/98/NT, Salford Systems, San Diego, C.A.
    • Salford Systems, MARS 2.0-for windows 95/98/NT, Salford Systems, San Diego, C.A., 2001.
    • (2001)
  • 53
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification (Technical Report)
    • Department of Computer Science and Information Engineering, National Taiwan University, Taipei
    • C.J. Lin, C.W. Hsu, C.C. Chang, A practical guide to support vector classification (Technical Report), Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 2003.
    • (2003)
    • Lin, C.J.1    Hsu, C.W.2    Chang, C.C.3
  • 54
    • 84865560594 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, 2011. 〈http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html〉.
    • (2011)
    • Chang, C.C.1    Lin, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.