메뉴 건너뛰기




Volumn 15, Issue 6, 2009, Pages 1081-1087

Product sales forecasting model based on robust ν-support vector machine

Author keywords

Forecasting model; Hybrid noises; Robust loss function; Support vector machine

Indexed keywords

AMPLITUDE NOISE; FORECASTING MODEL; GAUSSIAN; HYBRID NOISES; LOSS FUNCTIONS; OPTIMIZATION PROBLEMS; PREDICTION MODEL; PRODUCT SALES; ROBUST LOSS FUNCTION; SINGULAR POINTS;

EID: 67650082706     PISSN: 10065911     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (17)
  • 2
    • 0000350633 scopus 로고
    • Combining competing forecasts of inflation using a bivariate ARCH model
    • ENGLE R F. Combining competing forecasts of inflation using a bivariate ARCH model [J]. Journal of Economic Dynamics and Control, 1984, 8 (2): 151-165.
    • (1984) Journal of Economic Dynamics and Control , vol.8 , Issue.2 , pp. 151-165
    • Engle, R.F.1
  • 3
    • 0035283856 scopus 로고    scopus 로고
    • Sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm
    • KUO R J. Sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm [J]. European Journal of Operational Research, 2001, 129 (3): 496-517.
    • (2001) European Journal of Operational Research , vol.129 , Issue.3 , pp. 496-517
    • Kuo, R.J.1
  • 4
    • 0000557133 scopus 로고
    • Holt-winters forecasting: Some practical issues
    • CHATFIELD C, YAR M. Holt-winters forecasting: Some practical issues [J]. The Statistician, 1988, 37: 129-140.
    • (1988) The Statistician , vol.37 , pp. 129-140
    • Chatfield, C.1    Yar, M.2
  • 6
    • 34250877385 scopus 로고    scopus 로고
    • A robust shot transition detection method based on support vector machine in compressed domain
    • CAO J R, CAI A N. A robust shot transition detection method based on support vector machine in compressed domain [J]. Pattern Recognition Letters, 2007, 28 (12): 1534-1540.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.12 , pp. 1534-1540
    • Cao, J.R.1    Cai, A.N.2
  • 7
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • WIDODOA A, YANG B S. Support vector machine in machine condition monitoring and fault diagnosis [J]. Mechanical Systems and Signal Processing, 2007, 21 (6): 2560-2574.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2560-2574
    • Widodoa, A.1    Yang, B.S.2
  • 8
    • 32544451454 scopus 로고    scopus 로고
    • Support vector machine for functional data classification
    • ROSSI F, VILLAB N. Support vector machine for functional data classification [J]. Neurocomputing, 2006, 69 (7/9): 730-742.
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 730-742
    • Rossi, F.1    Villab, N.2
  • 9
    • 34047151447 scopus 로고    scopus 로고
    • Customer churn analysis based on improved support vector machine
    • in Chinese
    • ZHAO Yu, LI Bing, LI Xiu, et al. Customer churn analysis based on improved support vector machine [J]. Computer Integrated Manufacturing Systems, 2007, 13 (1): 202-207 (in Chinese).
    • (2007) Computer Integrated Manufacturing Systems , vol.13 , Issue.1 , pp. 202-207
    • Zhao, Y.1    Li, B.2    Li, X.3
  • 10
    • 33746526199 scopus 로고    scopus 로고
    • Coordinated early warning of supply chain partnership based on multi-support vector machines systems
    • in Chinese
    • LI Hui, LI Xiangyang, WANG Yanxin. Coordinated early warning of supply chain partnership based on multi-support vector machines systems [J]. Computer Integrated Manufacturing Systems, 2006, 12 (5): 753-758 (in Chinese).
    • (2006) Computer Integrated Manufacturing Systems , vol.12 , Issue.5 , pp. 753-758
    • Li, H.1    Li, X.2    Wang, Y.3
  • 11
    • 34248674676 scopus 로고    scopus 로고
    • An approach to estimating product design time based on fuzzy ν-support vector machine
    • YAN H S, XU D. An approach to estimating product design time based on fuzzy ν-support vector machine [J]. IEEE Transactions on Neural Networks, 2007, 18 (3): 721-731.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 721-731
    • Yan, H.S.1    Xu, D.2
  • 12
    • 33750294989 scopus 로고    scopus 로고
    • Robust LS-SVM regression using fuzzy C-means clustering
    • SHIM J, HWANG C, NAU S. Robust LS-SVM regression using fuzzy C-means clustering [J]. Lecture Notes in Computer Science, 2006, 4221: 157-166.
    • (2006) Lecture Notes in Computer Science , vol.4221 , pp. 157-166
    • Shim, J.1    Hwang, C.2    Nau, S.3
  • 13
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • FRANCIS E H T, CAO L J. Modified support vector machines in financial time series forecasting [J]. Neurocomputing, 2002, 48 (1/4): 847-861.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 847-861
    • Francis, E.H.T.1    Cao, L.J.2
  • 15
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • BARTLETT P L. The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network [J]. IEEE Transactions on Information Theory, 1998, 44 (2): 525-536.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 16
    • 0032166068 scopus 로고    scopus 로고
    • Structural risk minimization over data-dependent hierarchies
    • TAYLOR S J. Structural risk minimization over data-dependent hierarchies [J]. IEEE Transactions on Information Theory, 1998, 44 (5): 1926-1940.
    • (1998) IEEE Transactions on Information Theory , vol.44 , Issue.5 , pp. 1926-1940
    • Taylor, S.J.1
  • 17
    • 36549032307 scopus 로고    scopus 로고
    • Multi-output support vector regression with piecewise loss function
    • in Chinese
    • HU Gensheng, DENG Feiqi. Multi-output support vector regression with piecewise loss function [J]. Control Theory & Applications, 2007, 24 (5): 711-714 (in Chinese).
    • (2007) Control Theory & Applications , vol.24 , Issue.5 , pp. 711-714
    • Hu, G.1    Deng, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.