메뉴 건너뛰기




Volumn 8188 LNAI, Issue PART 1, 2013, Pages 289-304

Spectral learning of sequence taggers over continuous sequences

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUOUS INPUT; CONTINUOUS SEQUENCES; DYNAMIC FEATURES; ELEMENTARY TRANSITION; LINEAR COMBINATIONS; REAL-WORLD PROBLEM; SPECTRAL ALGORITHM; SPECTRAL LEARNING;

EID: 84886534529     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-40988-2_19     Document Type: Conference Paper
Times cited : (7)

References (28)
  • 2
    • 84886568005 scopus 로고    scopus 로고
    • A method of moments for mixture models and hidden markov models
    • abs/1203 0683
    • Anandkumar, A., Hsu, D., Kakade, S.M.: A method of moments for mixture models and hidden markov models. CoRR abs/1203 0683 (2012)
    • (2012) CoRR
    • Anandkumar, A.1    Hsu, D.2    Kakade, S.M.3
  • 3
    • 84867133071 scopus 로고    scopus 로고
    • Quadratic weighted automata: Spectral algorithm and likelihood maximization
    • Bailly, R.: Quadratic weighted automata: Spectral algorithm and likelihood maximization. Journal of Machine Learning Research (2011)
    • (2011) Journal of Machine Learning Research
    • Bailly, R.1
  • 4
    • 71149118396 scopus 로고    scopus 로고
    • Grammatical inference as a principal component analysis problem
    • Bailly, R., Denis, F., Ralaivola, L.: Grammatical inference as a principal component analysis problem. In: Proc. ICML (2009)
    • Proc. ICML (2009)
    • Bailly, R.1    Denis, F.2    Ralaivola, L.3
  • 5
    • 80052400030 scopus 로고    scopus 로고
    • A spectral learning algorithm for finite state transducers
    • Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. Springer, Heidelberg
    • Balle, B., Quattoni, A., Carreras, X.: A spectral learning algorithm for finite state transducers. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911, pp. 156-171. Springer, Heidelberg (2011)
    • (2011) LNCS , vol.6911 , pp. 156-171
    • Balle, B.1    Quattoni, A.2    Carreras, X.3
  • 6
    • 84867131562 scopus 로고    scopus 로고
    • Local loss optimization in operator models: A new insight into spectral learning
    • Balle, B., Quattoni, A., Carreras, X.: Local loss optimization in operator models: A new insight into spectral learning. In: Proceedings of ICML, pp. 1879-1886 (2012)
    • (2012) Proceedings of ICML , pp. 1879-1886
    • Balle, B.1    Quattoni, A.2    Carreras, X.3
  • 8
    • 80052249260 scopus 로고    scopus 로고
    • Closing the learning planning loop with predictive state representations
    • Boots, B., Siddiqi, S., Gordon, G.: Closing the learning planning loop with predictive state representations. I. J. Robotic Research (2011)
    • (2011) I. J. Robotic Research
    • Boots, B.1    Siddiqi, S.2    Gordon, G.3
  • 10
    • 33745858268 scopus 로고    scopus 로고
    • Scene classification via pLSA
    • Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. Springer, Heidelberg
    • Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. LNCS, vol. 3954, pp. 517-530. Springer, Heidelberg (2006)
    • (2006) LNCS , vol.3954 , pp. 517-530
    • Bosch, A.1    Zisserman, A.2    Muñoz, X.3
  • 11
    • 0030588055 scopus 로고    scopus 로고
    • Full reconstruction of markov models on evolutionary trees: Identifiability and consistency
    • Chang, J.T.: Full reconstruction of markov models on evolutionary trees: Identifiability and consistency. Mathematical Biosciences 137, 51-73 (1996)
    • (1996) Mathematical Biosciences , vol.137 , pp. 51-73
    • Chang, J.T.1
  • 12
    • 80052413487 scopus 로고    scopus 로고
    • Partially supervised learning of morphology with stochastic transducers
    • Clark, A.: Partially supervised learning of morphology with stochastic transducers. In: Proc. of NLPRS, pp. 341-348 (2001)
    • (2001) Proc. of NLPRS , pp. 341-348
    • Clark, A.1
  • 13
    • 85149140805 scopus 로고    scopus 로고
    • Parameter estimation for probabilistic finite-state transducers
    • Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: Proc. of ACL, pp. 1-8 (2002)
    • (2002) Proc. of ACL , pp. 1-8
    • Eisner, J.1
  • 14
    • 80053359625 scopus 로고    scopus 로고
    • A comparison of Bayesian estimators for unsupervised Hidden Markov Model POS taggers
    • Gao, J., Johnson, M.: A comparison of Bayesian estimators for unsupervised Hidden Markov Model POS taggers. In: Proceedings of EMNLP, pp. 344-352 (2008)
    • (2008) Proceedings of EMNLP , pp. 344-352
    • Gao, J.1    Johnson, M.2
  • 16
    • 0034198996 scopus 로고    scopus 로고
    • Observable operator models for discrete stochastic time series
    • Jaeger, H.: Observable operator models for discrete stochastic time series. Neural Computation 12, 1371-1398 (2000)
    • (2000) Neural Computation , vol.12 , pp. 1371-1398
    • Jaeger, H.1
  • 19
    • 84988558923 scopus 로고    scopus 로고
    • Spectral learning in non-deterministic dependency parsing
    • Luque, F., Quattoni, A., Balle, B., Carreras, X.: Spectral learning in non-deterministic dependency parsing. In: EACL (2012)
    • (2012) EACL
    • Luque, F.1    Quattoni, A.2    Balle, B.3    Carreras, X.4
  • 20
    • 34948881770 scopus 로고    scopus 로고
    • Latent-dynamic discriminative models for continuous gesture recognition
    • Morency, L.P., Quattoni, A., Darrell, T.: Latent-dynamic discriminative models for continuous gesture recognition. In: CVPR (2007)
    • (2007) CVPR
    • Morency, L.P.1    Quattoni, A.2    Darrell, T.3
  • 21
    • 84858515413 scopus 로고    scopus 로고
    • Learning nonsingular phylogenies and hidden markov models
    • Mossel, E., Roch, S.: Learning nonsingular phylogenies and hidden markov models. In: Proc. of STOC (2005)
    • Proc. of STOC (2005)
    • Mossel, E.1    Roch, S.2
  • 23
    • 84886505897 scopus 로고    scopus 로고
    • Marginalizing out transition probabilities for several subclasses of pfas
    • Shibata, C., Yoshinaka, R.: Marginalizing out transition probabilities for several subclasses of pfas. In: JMLR Workshop and Conference Proceedings, ICGI 2012, vol. 21, pp. 259-263 (2012)
    • (2012) JMLR Workshop and Conference Proceedings, ICGI 2012 , vol.21 , pp. 259-263
    • Shibata, C.1    Yoshinaka, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.