-
1
-
-
0000353178
-
A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
-
Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41(1), 164-171.
-
(1970)
Annals of Mathematical Statistics
, vol.41
, Issue.1
, pp. 164-171
-
-
Baum, L.E.1
Petrie, T.2
Soules, G.3
Weiss, N.4
-
2
-
-
0000802938
-
Markovian models for sequential data
-
Bengio, Y. (1999). Markovian models for sequential data. Neural Computing Surveys, 2, 129-162.
-
(1999)
Neural Computing Surveys
, vol.2
, pp. 129-162
-
-
Bengio, Y.1
-
3
-
-
55049095024
-
Hidden Markov models and other finite state automata for sequence processing
-
M. A., Arbin (Ed.), Cambridge, MA: MIT Press
-
Bourlard, H., & Bengio, S. (2002). Hidden Markov models and other finite state automata for sequence processing. In M. A., Arbin (Ed.), The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.
-
(2002)
The handbook of brain theory and neural networks
-
-
Bourlard, H.1
Bengio, S.2
-
4
-
-
0018011435
-
Kronecker product and matrix calculus in system theory
-
Brewer, J. W. (1978). Kronecker product and matrix calculus in system theory. IEEE Transactions on Circuits and Systems, CAS-25(9), 772-781.
-
(1978)
IEEE Transactions on Circuits and Systems
, vol.CAS-25
, Issue.9
, pp. 772-781
-
-
Brewer, J.W.1
-
5
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM-algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society, 39(1), 1-38.
-
(1977)
Journal of the Royal Statistical Society
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
6
-
-
0003516147
-
-
Cambridge: Cambridge University Press
-
Durbin, R., Eddy, S., Krogh, A., & Mitchinson, G. (2000). Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge: Cambridge University Press.
-
(2000)
Biological sequence analysis: Probabilistic models of proteins and nucleic acids
-
-
Durbin, R.1
Eddy, S.2
Krogh, A.3
Mitchinson, G.4
-
8
-
-
0036612017
-
Hidden Markov processes
-
Ephraim, Y., & Merhav, N. (2002). Hidden Markov processes. IEEE Transactions on Information Theory, 48(6), 1518-1569.
-
(2002)
IEEE Transactions on Information Theory
, vol.48
, Issue.6
, pp. 1518-1569
-
-
Ephraim, Y.1
Merhav, N.2
-
10
-
-
34447302314
-
Asymptotic mean stationarity of sources with finite evolution dimension
-
Faigle, U., & Schönhuth, A. (2007). Asymptotic mean stationarity of sources with finite evolution dimension. IEEE Transactions on Information Theory, 53, 2342-2348.
-
(2007)
IEEE Transactions on Information Theory
, vol.53
, pp. 2342-2348
-
-
Faigle, U.1
Schönhuth, A.2
-
11
-
-
0000582955
-
On stochastic processes derived from Markov chains
-
Heller, A. (1965). On stochastic processes derived from Markov chains. Annals of Mathematical Statistics, 36, 1286-1291.
-
(1965)
Annals of Mathematical Statistics
, vol.36
, pp. 1286-1291
-
-
Heller, A.1
-
13
-
-
0026837871
-
Identifiability of hidden Markov in-formation sources and their minimum degrees of freedom
-
Ito, H., Amari, S.-I., & Kobayashi, K. (1992). Identifiability of hidden Markov in-formation sources and their minimum degrees of freedom. IEEE Trans. Inform. Theory, 38(2), 324-333.
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, Issue.2
, pp. 324-333
-
-
Ito, H.1
Amari, S.-I.2
Kobayashi, K.3
-
16
-
-
0034198996
-
Observable operator models for discrete stochastic time series
-
Jaeger, H. (2000). Observable operator models for discrete stochastic time series. Neural Computation, 12(6), 1371-1398.
-
(2000)
Neural Computation
, vol.12
, Issue.6
, pp. 1371-1398
-
-
Jaeger, H.1
-
17
-
-
65749099041
-
Learning observable operator models via the ES algorithm
-
S. Haykin, J. Principe, T. Sejnowski, & J. McWhirter (Eds.), Cambridge, MA: MIT Press
-
Jaeger, H., Zhao, M.-J., Kretzschmar, K., Oberstein, T. G., Popovici, D., & Kolling, A. (2005). Learning observable operator models via the ES algorithm. In S. Haykin, J. Principe, T. Sejnowski, & J. McWhirter (Eds.), New directions in statistical signal processing: From systems to brains. Cambridge, MA: MIT Press.
-
(2005)
New directions in statistical signal processing: From systems to brains
-
-
Jaeger, H.1
Zhao, M.-J.2
Kretzschmar, K.3
Oberstein, T.G.4
Popovici, D.5
Kolling, A.6
-
18
-
-
1942449765
-
Predictive representation of state
-
T. G. Deterrich, S. Becker, & Z. Ghahramani (Eds.), Cambridge, MA: MIT Press
-
Littman, M. L., Sutton, R. S., & Satinder, S. (2001). Predictive representation of state. In T. G. Deterrich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 1555-1561), Cambridge, MA: MIT Press.
-
(2001)
Advances in neural information processing systems
, vol.14
, pp. 1555-1561
-
-
Littman, M.L.1
Sutton, R.S.2
Satinder, S.3
-
19
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.R.1
-
22
-
-
70349239285
-
A bound on modeling error in observable operator models and an associated learning algorithm
-
Zhao, M.-J., Jaeger, H., & Thon, M. (2009). A bound on modeling error in observable operator models and an associated learning algorithm. Neural Computation, 20(9), 2687-2712.
-
(2009)
Neural Computation
, vol.20
, Issue.9
, pp. 2687-2712
-
-
Zhao, M.-J.1
Jaeger, H.2
Thon, M.3
|