-
1
-
-
31144473356
-
Antioxidant and free radical scavenging activities of Misodendrum punctulatum, myzodendrone and structurally related phenols
-
Desmarchelier C, del V Pacciaroni A, Abate-Daga D, et al. Antioxidant and free radical scavenging activities of Misodendrum punctulatum, myzodendrone and structurally related phenols. Phytother Res. 2005; 19: 1043-7.
-
(2005)
Phytother Res
, vol.19
, pp. 1043-1047
-
-
Desmarchelier, C.1
del V Pacciaroni, A.2
Abate-Daga, D.3
-
2
-
-
0028037203
-
Antioxidant properties of dehydrozingerone and curcumin in rat brain homogenates
-
Rajakumar DV, Rao MN. Antioxidant properties of dehydrozingerone and curcumin in rat brain homogenates. Mol Cell Biochem. 1994; 140: 73-9.
-
(1994)
Mol Cell Biochem
, vol.140
, pp. 73-79
-
-
Rajakumar, D.V.1
Rao, M.N.2
-
3
-
-
34548570431
-
Free radical scavenging and radioprotective activity of dehydrozingerone against whole body gamma irradiation in Swiss albino mice
-
Parihar VK, Dhawan J, Kumar S, et al. Free radical scavenging and radioprotective activity of dehydrozingerone against whole body gamma irradiation in Swiss albino mice. Chem Biol Interact. 2007; 170: 49-58.
-
(2007)
Chem Biol Interact
, vol.170
, pp. 49-58
-
-
Parihar, V.K.1
Dhawan, J.2
Kumar, S.3
-
4
-
-
0032417170
-
Inhibitory effects of dehydrozingerone and related compounds on 12-O-tetradecanoylphorbol-13-acetate induced Epstein-Barr virus early antigen activation
-
Motohashi N, Yamagami C, Tokuda H, et al. Inhibitory effects of dehydrozingerone and related compounds on 12-O-tetradecanoylphorbol-13-acetate induced Epstein-Barr virus early antigen activation. Cancer Lett. 1998; 134: 37-42.
-
(1998)
Cancer Lett
, vol.134
, pp. 37-42
-
-
Motohashi, N.1
Yamagami, C.2
Tokuda, H.3
-
5
-
-
34447629229
-
Anti-tumor agents 255: novel glycyrrhetinic acid-dehydrozingerone conjugates as cytotoxic agents
-
Tatsuzaki J, Taniguchi M, Bastow KF, et al. Anti-tumor agents 255: novel glycyrrhetinic acid-dehydrozingerone conjugates as cytotoxic agents. Bioorg Med Chem. 2007; 15: 6193-9.
-
(2007)
Bioorg Med Chem
, vol.15
, pp. 6193-6199
-
-
Tatsuzaki, J.1
Taniguchi, M.2
Bastow, K.F.3
-
6
-
-
80051545403
-
Effect of dehydrozingerone, a half analog of curcumin on dexamethasone-delayed wound healing in albino rats
-
Rao MC, Sudheendra AT, Nayak PG, et al. Effect of dehydrozingerone, a half analog of curcumin on dexamethasone-delayed wound healing in albino rats. Mol Cell Biochem. 2011; 355: 249-56.
-
(2011)
Mol Cell Biochem
, vol.355
, pp. 249-256
-
-
Rao, M.C.1
Sudheendra, A.T.2
Nayak, P.G.3
-
7
-
-
0027433851
-
Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers
-
Rajakumar DV, Rao MN. Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers. Biochem Pharmacol. 1993; 46: 2067-72.
-
(1993)
Biochem Pharmacol
, vol.46
, pp. 2067-2072
-
-
Rajakumar, D.V.1
Rao, M.N.2
-
8
-
-
10944247187
-
The AMP-activated protein kinase pathway-new players upstream and downstream
-
Hardie DG. The AMP-activated protein kinase pathway-new players upstream and downstream. J Cell Sci. 2004; 117: 5479-87.
-
(2004)
J Cell Sci
, vol.117
, pp. 5479-5487
-
-
Hardie, D.G.1
-
9
-
-
20844451123
-
AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
-
Kahn BB, Alquier T, Carling D, et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005; 1: 15-25.
-
(2005)
Cell Metab
, vol.1
, pp. 15-25
-
-
Kahn, B.B.1
Alquier, T.2
Carling, D.3
-
10
-
-
0031717105
-
The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?
-
Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998; 67: 821-55.
-
(1998)
Annu Rev Biochem
, vol.67
, pp. 821-855
-
-
Hardie, D.G.1
Carling, D.2
Carlson, M.3
-
11
-
-
0038199737
-
Management of cellular energy by the AMP-activated protein kinase system
-
Hardie DG, Scott JW, Pan DA, et al. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 2003; 546: 113-20.
-
(2003)
FEBS Lett
, vol.546
, pp. 113-120
-
-
Hardie, D.G.1
Scott, J.W.2
Pan, D.A.3
-
12
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003; 2: 28.
-
(2003)
J Biol
, vol.2
, pp. 28
-
-
Hawley, S.A.1
Boudeau, J.2
Reid, J.L.3
-
13
-
-
0032567252
-
Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase
-
Crute BE, Seefeld K, Gamble J, et al. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem. 1998; 273: 35347-54.
-
(1998)
J Biol Chem
, vol.273
, pp. 35347-35354
-
-
Crute, B.E.1
Seefeld, K.2
Gamble, J.3
-
14
-
-
0034141355
-
The regulation of AMP-activated protein kinase by phosphorylation
-
Stein SC, Woods A, Jones NA, et al. The regulation of AMP-activated protein kinase by phosphorylation. Biochem J. 2000; 345: 437-43.
-
(2000)
Biochem J
, vol.345
, pp. 437-443
-
-
Stein, S.C.1
Woods, A.2
Jones, N.A.3
-
15
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Current Biol. 2003; 13: 2004-8.
-
(2003)
Current Biol
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
-
16
-
-
20444468520
-
Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast
-
Hong SP, Momcilovic M, Carlson M. Function of mammalian LKB1 and Ca2+/calmodulin-dependent protein kinase kinase alpha as Snf1-activating kinases in yeast. J Biol Chem. 2005; 280: 21804-9.
-
(2005)
J Biol Chem
, vol.280
, pp. 21804-21809
-
-
Hong, S.P.1
Momcilovic, M.2
Carlson, M.3
-
17
-
-
78649470585
-
Free radical scavenging activity and characterization of sesquiterpenoids in four species of Curcuma using a TLC bioautography assay and GC-MS analysis
-
Zhao J, Zhang JS, Yang B, et al. Free radical scavenging activity and characterization of sesquiterpenoids in four species of Curcuma using a TLC bioautography assay and GC-MS analysis. Molecules. 2010; 15: 7547-57.
-
(2010)
Molecules
, vol.15
, pp. 7547-7557
-
-
Zhao, J.1
Zhang, J.S.2
Yang, B.3
-
18
-
-
34548058841
-
Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism
-
Sandur SK, Pandey MK, Sung B, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007; 28: 1765-73.
-
(2007)
Carcinogenesis
, vol.28
, pp. 1765-1773
-
-
Sandur, S.K.1
Pandey, M.K.2
Sung, B.3
-
19
-
-
0030582419
-
Antimutagenic and anticarcinogenic activity of natural and synthetic curcuminoids
-
Anto RJ, George J, Babu KV, et al. Antimutagenic and anticarcinogenic activity of natural and synthetic curcuminoids. Mutat Res. 1996; 370: 127-31.
-
(1996)
Mutat Res
, vol.370
, pp. 127-131
-
-
Anto, R.J.1
George, J.2
Babu, K.V.3
-
20
-
-
13944267830
-
Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice
-
Nishiyama T, Mae T, Kishida H, et al. Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem. 2005; 53: 959-63.
-
(2005)
J Agric Food Chem
, vol.53
, pp. 959-963
-
-
Nishiyama, T.1
Mae, T.2
Kishida, H.3
-
21
-
-
0035957872
-
Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult
-
Kim DS, Park SY, Kim JK. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neurosci Lett. 2001; 303: 57-61.
-
(2001)
Neurosci Lett
, vol.303
, pp. 57-61
-
-
Kim, D.S.1
Park, S.Y.2
Kim, J.K.3
-
22
-
-
77951244999
-
Curcumin stimulates glucose uptake through AMPK-p38 MAPK pathways in L6 myotube cells
-
Kim JH, Park JM, Kim EK, et al. Curcumin stimulates glucose uptake through AMPK-p38 MAPK pathways in L6 myotube cells. J Cell Physiol. 2010; 223: 771-8.
-
(2010)
J Cell Physiol
, vol.223
, pp. 771-778
-
-
Kim, J.H.1
Park, J.M.2
Kim, E.K.3
-
23
-
-
0025063340
-
Glucose uptake in human and animal muscle cells in culture
-
Sarabia V, Ramlal T, Klip A. Glucose uptake in human and animal muscle cells in culture. Biochem Cell Biol. 1990; 68: 536-42.
-
(1990)
Biochem Cell Biol
, vol.68
, pp. 536-542
-
-
Sarabia, V.1
Ramlal, T.2
Klip, A.3
-
24
-
-
17444434110
-
Activation of p38 mitogen-activated protein kinase alpha and beta by insulin and contraction in rat skeletal muscle: potential role in the stimulation of glucose transport
-
Somwar R, Perreault M, Kapur S, et al. Activation of p38 mitogen-activated protein kinase alpha and beta by insulin and contraction in rat skeletal muscle: potential role in the stimulation of glucose transport. Diabetes. 2000; 49: 1794-800.
-
(2000)
Diabetes
, vol.49
, pp. 1794-1800
-
-
Somwar, R.1
Perreault, M.2
Kapur, S.3
-
25
-
-
0035798668
-
Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase
-
Xi X, Han J, Zhang JZ. Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase. J Biol Chem. 2001; 276: 41029-34.
-
(2001)
J Biol Chem
, vol.276
, pp. 41029-41034
-
-
Xi, X.1
Han, J.2
Zhang, J.Z.3
-
26
-
-
0018146189
-
A study on the fate of curcumin in the rat
-
Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol. 1978; 43: 86-92.
-
(1978)
Acta Pharmacol Toxicol
, vol.43
, pp. 86-92
-
-
Wahlstrom, B.1
Blennow, G.2
-
27
-
-
0032926620
-
Biotransformation of curcumin through reduction and glucuronidation in mice
-
Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 1999; 27: 486-94.
-
(1999)
Drug Metab Dispos
, vol.27
, pp. 486-494
-
-
Pan, M.H.1
Huang, T.M.2
Lin, J.K.3
-
28
-
-
33749265462
-
Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for beta-amyloid plaque imaging
-
Ryu EK, Choe YS, Lee KH, et al. Curcumin and dehydrozingerone derivatives: synthesis, radiolabeling, and evaluation for beta-amyloid plaque imaging. J Med Chem. 2006; 49: 6111-9.
-
(2006)
J Med Chem
, vol.49
, pp. 6111-6119
-
-
Ryu, E.K.1
Choe, Y.S.2
Lee, K.H.3
-
29
-
-
20844435106
-
Oral antihyperglycemic agents and renal disease: new agents, new concepts
-
Yale JF. Oral antihyperglycemic agents and renal disease: new agents, new concepts. J Am Soc Nephrol. 2005; 16: S7-10.
-
(2005)
J Am Soc Nephrol
, vol.16
, pp. S7-10
-
-
Yale, J.F.1
-
30
-
-
0032053572
-
The sulfonylurea controversy: more questions from the heart
-
Brady PA, Terzic A. The sulfonylurea controversy: more questions from the heart. J Am Coll Cardiol. 1998; 31: 950-6.
-
(1998)
J Am Coll Cardiol
, vol.31
, pp. 950-956
-
-
Brady, P.A.1
Terzic, A.2
-
31
-
-
0035504158
-
GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase
-
Somwar R, Kim DY, Sweeney G, et al. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem J. 2001; 359: 639-49.
-
(2001)
Biochem J
, vol.359
, pp. 639-649
-
-
Somwar, R.1
Kim, D.Y.2
Sweeney, G.3
-
32
-
-
34147140333
-
p38 mitogen-activated protein kinase mediates adenosine-induced alterations in myocardial glucose utilization via 5'-AMP-activated protein kinase
-
Jaswal JS, Gandhi M, Finegan BA, et al. p38 mitogen-activated protein kinase mediates adenosine-induced alterations in myocardial glucose utilization via 5'-AMP-activated protein kinase. Am J Physiol Heart Circ Physiol. 2007; 292: H1978-85.
-
(2007)
Am J Physiol Heart Circ Physiol
, vol.292
, pp. H1978-H1985
-
-
Jaswal, J.S.1
Gandhi, M.2
Finegan, B.A.3
-
33
-
-
67650348685
-
Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase
-
Chambers MA, Moylan JS, Smith JD, et al. Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol. 2009; 587: 3363-73.
-
(2009)
J Physiol
, vol.587
, pp. 3363-3373
-
-
Chambers, M.A.1
Moylan, J.S.2
Smith, J.D.3
-
34
-
-
77955480007
-
Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy
-
Bhashyam S, Fields AV, Patterson B, et al. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail. 2010; 3: 512-21.
-
(2010)
Circ Heart Fail
, vol.3
, pp. 512-521
-
-
Bhashyam, S.1
Fields, A.V.2
Patterson, B.3
-
35
-
-
77149154335
-
Adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation
-
Vila-Bedmar R, Lorenzo M, Fernandez-Veledo S. Adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology. 2010; 151: 980-92.
-
(2010)
Endocrinology
, vol.151
, pp. 980-992
-
-
Vila-Bedmar, R.1
Lorenzo, M.2
Fernandez-Veledo, S.3
-
36
-
-
84860850964
-
BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions
-
Whittle AJ, Carobbio S, Martins L, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012; 149: 871-85.
-
(2012)
Cell
, vol.149
, pp. 871-885
-
-
Whittle, A.J.1
Carobbio, S.2
Martins, L.3
|