-
1
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183-202, 2009.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
3
-
-
0037877567
-
Monotonicity of quadratic-approximation algorithms
-
Böhning, D. and Lindsay, B. G. Monotonicity of quadratic- approximation algorithms. Ann. I. Stat. Math., 40(4):-641-663, 1988.
-
(1988)
Ann. I. Stat. Math.
, vol.40
, Issue.4
, pp. 641-663
-
-
Böhning, D.1
Lindsay, B.G.2
-
5
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proc. COMPSTAT, 2010.
-
Proc. COMPSTAT, 2010
-
-
Bottou, L.1
-
6
-
-
80053451705
-
Parallel coordinate descent for l1-regularized loss minimization
-
Bradley, J.K., Kyrola, A., Bickson, D., and Guestrin, C. Parallel coordinate descent for l1-regularized loss minimization. In Proc. ICML, 2011.
-
Proc. ICML, 2011
-
-
Bradley, J.K.1
Kyrola, A.2
Bickson, D.3
Guestrin, C.4
-
8
-
-
0036643072
-
Logistic regression, AdaBoost and Bregman distances
-
DOI 10.1023/A:1013912006537
-
Collins, M., Schapire, R.E., and Singer, Y. Logistic regression, AdaBoost and Bregman distances. Mach. Learn., 48(1):253-285, 2002. (Pubitemid 34247580)
-
(2002)
Machine Learning
, vol.48
, Issue.1-3
, pp. 253-285
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
9
-
-
7044231546
-
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
-
DOI 10.1002/cpa.20042
-
Daubechies, I., Defrise, M., and De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pur. Appl. Math., 57(11):1413-1457, 2004. (Pubitemid 39427442)
-
(2004)
Communications on Pure and Applied Mathematics
, vol.57
, Issue.11
, pp. 1413-1457
-
-
Daubechies, I.1
Defrise, M.2
De Mol, C.3
-
10
-
-
0004027463
-
-
Technical report, CMU-CS-01-109
-
Della Pietra, S., Della Pietra, V., and Lafferty, J. Duality and auxiliary functions for Bregman distances. Technical report, CMU-CS-01-109, 2001.
-
(2001)
Duality and Auxiliary Functions for Bregman Distances
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
11
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res., 9:1871-1874, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
12
-
-
70450245260
-
Recovering sparse signals with non-convex penalties and DC programming
-
Gasso, G., Rakotomamonjy, A., and Canu, S. Recovering sparse signals with non-convex penalties and DC programming. IEEE T. Signal Process., 57(12):4686-4698, 2009.
-
(2009)
IEEE T. Signal Process.
, vol.57
, Issue.12
, pp. 4686-4698
-
-
Gasso, G.1
Rakotomamonjy, A.2
Canu, S.3
-
16
-
-
84865676844
-
First order methods for nonsmooth convex large-scale optimization, I: General purpose methods
-
MIT Press
-
Juditsky, A. and Nemirovski, A. First order methods for nonsmooth convex large-scale optimization, I: General purpose methods. In Optimization for Machine Learning. MIT Press, 2011.
-
(2011)
Optimization for Machine Learning
-
-
Juditsky, A.1
Nemirovski, A.2
-
17
-
-
85162389868
-
Variational bounds for mixed-data factor analysis
-
Khan, E., Marlin, B., Bouchard, G., and Murphy, K. Variational bounds for mixed-data factor analysis. In Adv. NIPS, 2010.
-
(2010)
Adv. NIPS
-
-
Khan, E.1
Marlin, B.2
Bouchard, G.3
Murphy, K.4
-
18
-
-
84880570692
-
Block-coordinate Frank-Wolfe optimization for structural SVMs
-
Lacoste-Julien, S., Jaggi, M., Schmidt, M., and Pletscher, P. Block-coordinate Frank-Wolfe optimization for structural SVMs. In Proc. ICML, 2013.
-
Proc. ICML, 2013
-
-
Lacoste-Julien, S.1
Jaggi, M.2
Schmidt, M.3
Pletscher, P.4
-
19
-
-
77950023906
-
Optimization transfer using surrogate objective functions
-
Lange, K., Hunter, D.R., and Yang, I. Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat., 9(1):1-20, 2000.
-
(2000)
J. Comput. Graph. Stat.
, vol.9
, Issue.1
, pp. 1-20
-
-
Lange, K.1
Hunter, D.R.2
Yang, I.3
-
20
-
-
84877725219
-
A stochastic gradient method with an exponential convergence rate for finite training sets
-
Le Roux, N., Schmidt, M., and Bach, F. A stochastic gradient method with an exponential convergence rate for finite training sets. In Adv. NIPS, 2012.
-
(2012)
Adv. NIPS
-
-
Le Roux, N.1
Schmidt, M.2
Bach, F.3
-
21
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
Lee, D.D. and Seung, H.S. Algorithms for non-negative matrix factorization. In Adv. NIPS, 2001.
-
(2001)
Adv. NIPS
-
-
Lee, D.D.1
Seung, H.S.2
-
22
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
Mairal, J., Bach, F., Ponce, J., and Sapiro, G. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res., 11:19-60, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
23
-
-
0002788893
-
A view of the EM algorithm that justifies incremental, sparse, and other variants
-
Neal, R.M. and Hinton, G.E. A view of the EM algorithm that justifies incremental, sparse, and other variants. Learning in graphical models, 89:355-368, 1998.
-
(1998)
Learning in Graphical Models
, vol.89
, pp. 355-368
-
-
Neal, R.M.1
Hinton, G.E.2
-
26
-
-
84865692149
-
Efficiency of coordinate descent methods on huge-scale optimization problems
-
Nesterov, Y. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optimiz., 22(2):341-362, 2012.
-
(2012)
SIAM J. Optimiz.
, vol.22
, Issue.2
, pp. 341-362
-
-
Nesterov, Y.1
-
27
-
-
33646730150
-
Cubic regularization of Newton method and its global performance
-
Nesterov, Y. and Polyak, B.T. Cubic regularization of Newton method and its global performance. Math. Program., 108(1):177-205, 2006.
-
(2006)
Math. Program.
, vol.108
, Issue.1
, pp. 177-205
-
-
Nesterov, Y.1
Polyak, B.T.2
-
28
-
-
84863986110
-
Iteration complexity of randomized block coordinate descent methods for minimizing a composite function
-
Richtárik, P. and Takáč, M. Iteration complexity of randomized block coordinate descent methods for minimizing a composite function. Math. Program., 2012.
-
(2012)
Math. Program.
-
-
Richtárik, P.1
Takáč, M.2
-
29
-
-
85032752036
-
Variational Bayesian inference techniques
-
Seeger, M.W. and Wipf, D.P. Variational Bayesian inference techniques. IEEE Signal Proc. Mag., 27(6):81-91, 2010.
-
(2010)
IEEE Signal Proc. Mag.
, vol.27
, Issue.6
, pp. 81-91
-
-
Seeger, M.W.1
Wipf, D.P.2
-
32
-
-
46749146509
-
A coordinate gradient descent method for nonsmooth separable minimization
-
Tseng, P. and Yun, S. A coordinate gradient descent method for nonsmooth separable minimization. Math. Program., 117:387-423, 2009.
-
(2009)
Math. Program.
, vol.117
, pp. 387-423
-
-
Tseng, P.1
Yun, S.2
-
33
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Wainwright, M.J. and Jordan, M.I. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn., 1(1-2):1-305, 2008.
-
(2008)
Found. Trends Mach. Learn.
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
34
-
-
67650178787
-
Sparse reconstruction by separable approximation
-
Wright, S., Nowak, R., and Figueiredo, M. Sparse reconstruction by separable approximation. IEEE T. Signal Process., 57(7):2479-2493, 2009.
-
(2009)
IEEE T. Signal Process.
, vol.57
, Issue.7
, pp. 2479-2493
-
-
Wright, S.1
Nowak, R.2
Figueiredo, M.3
-
35
-
-
0037355948
-
Sequential greedy approximation for certain convex optimization problems
-
Zhang, T. Sequential greedy approximation for certain convex optimization problems. IEEE T. Inform. Theory, 49(3):682-691, 2003.
-
(2003)
IEEE T. Inform. Theory
, vol.49
, Issue.3
, pp. 682-691
-
-
Zhang, T.1
-
36
-
-
84877780790
-
Accelerated training for matrix-norm regularization: A boosting approach
-
Zhang, X., Yu, Y., and Schuurmans, D. Accelerated training for matrix-norm regularization: a boosting approach. In Adv. NIPS, 2012.
-
(2012)
Adv. NIPS
-
-
Zhang, X.1
Yu, Y.2
Schuurmans, D.3
|