-
1
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
J. Cai, E. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM J. Optim., 20:1956-1982, 2008.
-
(2008)
SIAM J. Optim.
, vol.20
, pp. 1956-1982
-
-
Cai, J.1
Candes, E.2
Shen, Z.3
-
2
-
-
31844453941
-
A machine-learning approach to conjoint analysis
-
O. Chapelle and Z. Harchaoui. A machine-learning approach to conjoint analysis. In NIPS 17, pages 257-264, 2005.
-
(2005)
NIPS
, vol.17
, pp. 257-264
-
-
Chapelle, O.1
Harchaoui, Z.2
-
3
-
-
84989525001
-
Indexing by latent semantic analysis
-
S. Deerwester, S. Dumais, G. Furnas, R. Landauer, and R. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391-407, 1990.
-
(1990)
Journal of the American Society for Information Science
, vol.41
, Issue.6
, pp. 391-407
-
-
Deerwester, S.1
Dumais, S.2
Furnas, G.3
Landauer, R.4
Harshman, R.5
-
5
-
-
85162389868
-
Variational bounds for mixed-data factor analysis
-
E. Khan, B. Marlin, G. Bouchard, and K. Murphy. Variational bounds for mixed-data factor analysis. In NIPS 22, 2010.
-
(2010)
NIPS
, vol.22
-
-
Khan, E.1
Marlin, B.2
Bouchard, G.3
Murphy, K.4
-
6
-
-
0031103122
-
Grouplens: Applying collaborative filtering to usenet groups
-
J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl. Grouplens: Applying collaborative filtering to usenet groups. Communications of the ACM, 40(3):77-87, 1997.
-
(1997)
Communications of the ACM
, vol.40
, Issue.3
, pp. 77-87
-
-
Konstan, J.1
Miller, B.2
Maltz, D.3
Herlocker, J.4
Gordon, L.5
Riedl, J.6
-
9
-
-
80555154425
-
Theoretical analysis of Bayesian matrix factorization
-
S. Nakajima and Sugiyama. Theoretical analysis of Bayesian matrix factorization. JMLR, 12:2579-2644, 2011.
-
(2011)
JMLR
, vol.12
, pp. 2579-2644
-
-
Nakajima, S.1
Sugiyama2
-
10
-
-
9744239998
-
Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model
-
L. Paninski, J. Pillow, and E. Simoncelli. Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. N. Comp., 16:2533-2561, 2004.
-
(2004)
N. Comp.
, vol.16
, pp. 2533-2561
-
-
Paninski, L.1
Pillow, J.2
Simoncelli, E.3
-
11
-
-
65449137417
-
Principal component analysis for large scale problems with lots of missing values
-
T. Raiko, A. Ilin, and J. Karhunen. Principal component analysis for large scale problems with lots of missing values. In ECML 18, pages 691-698, 2007.
-
(2007)
ECML
, vol.18
, pp. 691-698
-
-
Raiko, T.1
Ilin, A.2
Karhunen, J.3
-
12
-
-
74349093161
-
Inference algorithms and learning theory for Bayesian sparse factor analysis
-
M. Rattray, O. Stegle, K. Sharp, and J. Winn. Inference algorithms and learning theory for Bayesian sparse factor analysis. Journal of Physics: Conference Series, 197(012002), 2009.
-
(2009)
Journal of Physics: Conference Series
, vol.197
, pp. 012002
-
-
Rattray, M.1
Stegle, O.2
Sharp, K.3
Winn, J.4
-
15
-
-
85161989354
-
Probabilistic matrix factorization
-
R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS 20, pages 1257-1264, 2008.
-
(2008)
NIPS
, vol.20
, pp. 1257-1264
-
-
Salakhutdinov, R.1
Mnih, A.2
-
16
-
-
84898932317
-
Maximum margin matrix factorization
-
N. Srebro, J. Rennie, and T. Jaakkola. Maximum margin matrix factorization. In NIPS 17, pages 1329-1336, 2005.
-
(2005)
NIPS
, vol.17
, pp. 1329-1336
-
-
Srebro, N.1
Rennie, J.2
Jaakkola, T.3
-
17
-
-
79957510064
-
Recovering low-rank and sparse components of matrices from incomplete and noisy observations
-
M. Tao and X. Yuan. Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim., 21(1):57-81, 2011.
-
(2011)
SIAM J. Optim.
, vol.21
, Issue.1
, pp. 57-81
-
-
Tao, M.1
Yuan, X.2
-
18
-
-
0038959172
-
Probabilistic principal component analysis
-
M. Tipping and C. Bishop. Probabilistic principal component analysis. J. Roy. Stat. Soc. B, 61(3):611-622, 1999.
-
(1999)
J. Roy. Stat. Soc. B
, vol.61
, Issue.3
, pp. 611-622
-
-
Tipping, M.1
Bishop, C.2
-
19
-
-
77956529188
-
An efficient and general augmented Lagrangian algorithm for learning low-rank matrices
-
R. Tomioka, T. Suzuki, M. Sugiyama, and H. Kashima. An efficient and general augmented Lagrangian algorithm for learning low-rank matrices. In ICML 27, pages 1087-1094, 2010.
-
(2010)
ICML
, vol.27
, pp. 1087-1094
-
-
Tomioka, R.1
Suzuki, T.2
Sugiyama, M.3
Kashima, H.4
|