메뉴 건너뛰기




Volumn 81, Issue 1, 2015, Pages 83-90

Control of doping by matrix in few-layer graphene/ metal oxide composites with highly enhanced electrical conductivity

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRIC CONDUCTIVITY; GRAPHENE; HOLE CONCENTRATION; METALLIC MATRIX COMPOSITES; OXYGEN; OXYGEN VACANCIES; VACANCIES; YTTRIUM ALLOYS; ZIRCONIA;

EID: 84922722425     PISSN: 00086223     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.carbon.2014.09.027     Document Type: Article
Times cited : (43)

References (43)
  • 4
    • 79951938480 scopus 로고    scopus 로고
    • Chemical doping of graphene
    • Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem 2011;21(10):3335-45.
    • (2011) J Mater Chem , vol.21 , Issue.10 , pp. 3335-3345
    • Liu, H.1    Liu, Y.2    Zhu, D.3
  • 5
    • 84864617063 scopus 로고    scopus 로고
    • Engineering the electronic structure of graphene
    • Zhan D, Yan J, Lai L, Ni Z, Liu L, Shen Z. Engineering the electronic structure of graphene. Adv Mater 2012;24(30):4055-69.
    • (2012) Adv Mater , vol.24 , Issue.30 , pp. 4055-4069
    • Zhan, D.1    Yan, J.2    Lai, L.3    Ni, Z.4    Liu, L.5    Shen, Z.6
  • 6
    • 84866516166 scopus 로고    scopus 로고
    • Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type
    • Fan YC, Jiang W, Kawasaki A. Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type. Adv Funct Mater 2012;22(18):3882-9.
    • (2012) Adv Funct Mater , vol.22 , Issue.18 , pp. 3882-3889
    • Fan, Y.C.1    Jiang, W.2    Kawasaki, A.3
  • 7
    • 63149118636 scopus 로고    scopus 로고
    • Effective doping of single-layer graphene from underlying SiO2 substrates
    • Shi Y, Dong X, Chen P, Wang J, Li L-J. Effective doping of single-layer graphene from underlying SiO2 substrates. Phys Rev B 2009;79(11):115402.
    • (2009) Phys Rev B , vol.79 , Issue.11 , pp. 115402
    • Shi, Y.1    Dong, X.2    Chen, P.3    Wang, J.4    Li, L.-J.5
  • 8
    • 71949096650 scopus 로고    scopus 로고
    • Charge transfer chemical doping of few layer graphenes: Charge distribution and band gap formation
    • Jung N, Kim N, Jockusch S, Turro NJ, Kim P, Brus L. Charge transfer chemical doping of few layer graphenes: charge distribution and band gap formation. Nano Lett 2009;9(12):4133-7.
    • (2009) Nano Lett , vol.9 , Issue.12 , pp. 4133-4137
    • Jung, N.1    Kim, N.2    Jockusch, S.3    Turro, N.J.4    Kim, P.5    Brus, L.6
  • 9
    • 84857717792 scopus 로고    scopus 로고
    • Strong chargetransfer doping of 1 to 10 layer graphene by NO2
    • Crowther AC, Ghassaei A, Jung N, Brus LE. Strong chargetransfer doping of 1 to 10 layer graphene by NO2. ACS Nano 2012;6(2):1865-75.
    • (2012) ACS Nano , vol.6 , Issue.2 , pp. 1865-1875
    • Crowther, A.C.1    Ghassaei, A.2    Jung, N.3    Brus, L.E.4
  • 10
    • 12344336576 scopus 로고    scopus 로고
    • Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering
    • Balazsi C, Shen Z, Konya Z, Kasztovszky Z,Weber F, Vertesy Z, et al. Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Compos Sci Technol 2005;65(5):727-33.
    • (2005) Compos Sci Technol , vol.65 , Issue.5 , pp. 727-733
    • Balazsi, C.1    Shen, Z.2    Konya, Z.3    Kasztovszky, Z.4    Weber, F.5    Vertesy, Z.6
  • 11
    • 62949246896 scopus 로고    scopus 로고
    • Ceramic matrix composites containing carbon nanotubes
    • Cho J, Boccaccini AR, Shaffer MSP. Ceramic matrix composites containing carbon nanotubes. J Mater Sci 2009;44(8):1934-51.
    • (2009) J Mater Sci , vol.44 , Issue.8 , pp. 1934-1951
    • Cho, J.1    Boccaccini, A.R.2    Shaffer, M.S.P.3
  • 12
    • 84887191022 scopus 로고    scopus 로고
    • The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites
    • Fan YC, Estili M, Igarashi G, Jiang W, Kawasaki A. The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. J Eur Ceram Soc 2014;34(2):443-51.
    • (2014) J Eur Ceram Soc , vol.34 , Issue.2 , pp. 443-451
    • Fan, Y.C.1    Estili, M.2    Igarashi, G.3    Jiang, W.4    Kawasaki, A.5
  • 13
    • 57049122772 scopus 로고    scopus 로고
    • Aqueous suspension and characterization of chemically modified graphene sheets
    • Park S, An JH, Piner RD, Jung I, Yang DX, Velamakanni A, et al. Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 2008;20(21):6592-4.
    • (2008) Chem Mater , vol.20 , Issue.21 , pp. 6592-6594
    • Park, S.1    An, J.H.2    Piner, R.D.3    Jung, I.4    Yang, D.X.5    Velamakanni, A.6
  • 14
    • 78651321592 scopus 로고    scopus 로고
    • Preparation of graphene nanosheet/alumina composites by spark plasma sintering
    • Wang K, Wang Y, Fan Z, Yan J, Wei T. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater Res Bull 2011;46(2):315-8.
    • (2011) Mater Res Bull , vol.46 , Issue.2 , pp. 315-318
    • Wang, K.1    Wang, Y.2    Fan, Z.3    Yan, J.4    Wei, T.5
  • 15
    • 3042810060 scopus 로고
    • Operational performance characteristics of pyrolytic graphite thermocouples
    • Klein CA, Lepie MP. Operational performance characteristics of pyrolytic graphite thermocouples. Solid State Electron 1964;7(4):241-52.
    • (1964) Solid State Electron , vol.7 , Issue.4 , pp. 241-252
    • Klein, C.A.1    Lepie, M.P.2
  • 16
    • 0001136968 scopus 로고
    • STB model + transport properties of pyrolytic graphites
    • Klein CA. STB model + transport properties of pyrolytic graphites. J Appl Phys 1964;35(10):2947-57.
    • (1964) J Appl Phys , vol.35 , Issue.10 , pp. 2947-2957
    • Klein, C.A.1
  • 17
    • 66749160818 scopus 로고    scopus 로고
    • The optimal seebeck coefficient for obtaining the maximum power factor in thermoelectrics
    • Pichanusakorn P, Bandaru PR. The optimal seebeck coefficient for obtaining the maximum power factor in thermoelectrics. Appl Phys Lett 2009;94(22):223108.
    • (2009) Appl Phys Lett , vol.94 , Issue.22 , pp. 223108
    • Pichanusakorn, P.1    Bandaru, P.R.2
  • 18
    • 78650122340 scopus 로고    scopus 로고
    • Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate
    • Ryu S, Liu L, Berciaud S,Yu YJ, LiuHT, Kim P, et al. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett 2010;10(12):4944-51.
    • (2010) Nano Lett , vol.10 , Issue.12 , pp. 4944-4951
    • Ryu, S.1    Liu, L.2    Berciaud, S.3    Yu, Y.J.4    Liu, H.T.5    Kim, P.6
  • 20
    • 80053249104 scopus 로고    scopus 로고
    • Evaluation criteria for reduced graphene oxide
    • Luo DC, Zhang GX, Liu JF, Sun XM. Evaluation criteria for reduced graphene oxide. J PhysChem C 2011;115(23):11327-35.
    • (2011) J PhysChem C , vol.115 , Issue.23 , pp. 11327-11335
    • Luo, D.C.1    Zhang, G.X.2    Liu, J.F.3    Sun, X.M.4
  • 21
    • 56949104599 scopus 로고    scopus 로고
    • Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy
    • Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009;47(1):145-52.
    • (2009) Carbon , vol.47 , Issue.1 , pp. 145-152
    • Yang, D.1    Velamakanni, A.2    Bozoklu, G.3    Park, S.4    Stoller, M.5    Piner, R.D.6
  • 22
    • 70449534780 scopus 로고    scopus 로고
    • The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets
    • Akhavan O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 2010;48(2):509-19.
    • (2010) Carbon , vol.48 , Issue.2 , pp. 509-519
    • Akhavan, O.1
  • 23
    • 0002628761 scopus 로고    scopus 로고
    • Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts
    • Weckhuysen BM, Rosynek MP, Lunsford JH. Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts. Catal Lett 1998;52 (1-2):31-6.
    • (1998) Catal Lett , vol.52 , Issue.1-2 , pp. 31-36
    • Weckhuysen, B.M.1    Rosynek, M.P.2    Lunsford, J.H.3
  • 24
    • 33644659711 scopus 로고    scopus 로고
    • Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)
    • Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 2006;16(2):155-8.
    • (2006) J Mater Chem , vol.16 , Issue.2 , pp. 155-158
    • Stankovich, S.1    Piner, R.D.2    Chen, X.Q.3    Wu, N.Q.4    Nguyen, S.T.5    Ruoff, R.S.6
  • 25
    • 45149132017 scopus 로고    scopus 로고
    • Evaluation of solution-processed reduced graphene oxide films as transparent conductors
    • Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008;2(3):463-70.
    • (2008) ACS Nano , vol.2 , Issue.3 , pp. 463-470
    • Becerril, H.A.1    Mao, J.2    Liu, Z.3    Stoltenberg, R.M.4    Bao, Z.5    Chen, Y.6
  • 26
    • 34249889935 scopus 로고    scopus 로고
    • Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects
    • Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 2007;143(1-2):47-57.
    • (2007) Solid State Commun , vol.143 , Issue.1-2 , pp. 47-57
    • Ferrari, A.C.1
  • 27
    • 78650104190 scopus 로고    scopus 로고
    • Reduced graphene oxide by chemical graphitization
    • Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun 2010;1:73.
    • (2010) Nat Commun , vol.1 , pp. 73
    • Moon, I.K.1    Lee, J.2    Ruoff, R.S.3    Lee, H.4
  • 28
    • 67650324896 scopus 로고    scopus 로고
    • Doping singlelayer graphene with aromatic molecules
    • Dong XC, Fu DL, Fang WJ, Shi YM, Chen P, Li LJ. Doping singlelayer graphene with aromatic molecules. Small 2009;5(12):1422-6.
    • (2009) Small , vol.5 , Issue.12 , pp. 1422-1426
    • Dong, X.C.1    Fu, D.L.2    Fang, W.J.3    Shi, Y.M.4    Chen, P.5    Li, L.J.6
  • 29
    • 84860727892 scopus 로고    scopus 로고
    • Synthesis of potassium-modified graphene and its application in nitriteselective sensing
    • Li XR, Kong FY, Liu J, Liang TM, Xu JJ, Chen HY. Synthesis of potassium-modified graphene and its application in nitriteselective sensing. Adv Funct Mater 2012;22(9):1981-8.
    • (2012) Adv Funct Mater , vol.22 , Issue.9 , pp. 1981-1988
    • Li, X.R.1    Kong, F.Y.2    Liu, J.3    Liang, T.M.4    Xu, J.J.5    Chen, H.Y.6
  • 30
    • 41849142983 scopus 로고    scopus 로고
    • Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    • Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 2008;3(4):210-5.
    • (2008) Nat Nanotechnol , vol.3 , Issue.4 , pp. 210-215
    • Das, A.1    Pisana, S.2    Chakraborty, B.3    Piscanec, S.4    Saha, S.K.5    Waghmare, U.V.6
  • 31
    • 33846352893 scopus 로고    scopus 로고
    • Nonadiabatic kohn anomaly in a doped graphene monolayer
    • Lazzeri M, Mauri F. Nonadiabatic kohn anomaly in a doped graphene monolayer. Phys Rev Lett 2006;97(26):266407.
    • (2006) Phys Rev Lett , vol.97 , Issue.26 , pp. 266407
    • Lazzeri, M.1    Mauri, F.2
  • 32
    • 84866717427 scopus 로고    scopus 로고
    • Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography
    • Wang QH, Jin Z, Kim KK, Hilmer AJ, Paulus GLC, Shih CJ, et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat Chem 2012;4(9):724-32.
    • (2012) Nat Chem , vol.4 , Issue.9 , pp. 724-732
    • Wang, Q.H.1    Jin, Z.2    Kim, K.K.3    Hilmer, A.J.4    Paulus, G.L.C.5    Shih, C.J.6
  • 33
    • 67649429576 scopus 로고    scopus 로고
    • Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, gruneisen parameters, and sample orientation
    • Mohiuddin TMG, Lombardo A, Nair RR, Bonetti A, Savini G, Jalil R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, gruneisen parameters, and sample orientation. Phys Rev B 2009;79(20):205433.
    • (2009) Phys Rev B , vol.79 , Issue.20 , pp. 205433
    • Mohiuddin, T.M.G.1    Lombardo, A.2    Nair, R.R.3    Bonetti, A.4    Savini, G.5    Jalil, R.6
  • 34
    • 0016049605 scopus 로고
    • Thermal and electrical conductivities and seebeck coefficients of unirradiated and irradiated graphites from 300 to 1000 degrees k
    • Moore JP, Graves RS, Mcelroy DL. Thermal and electrical conductivities and seebeck coefficients of unirradiated and irradiated graphites from 300 to 1000 degrees k. Nucl Technol 1974;22(1):88-93.
    • (1974) Nucl Technol , vol.22 , Issue.1 , pp. 88-93
    • Moore, J.P.1    Graves, R.S.2    McElroy, D.L.3
  • 35
    • 0018711648 scopus 로고
    • Thermoelectric and thermomagnetic properties of graphite. 1. Cylindrical band model
    • Ayache C, Spain IL. Thermoelectric and thermomagnetic properties of graphite. 1. Cylindrical band model. Carbon 1979;17(3):277-91.
    • (1979) Carbon , vol.17 , Issue.3 , pp. 277-291
    • Ayache, C.1    Spain, I.L.2
  • 36
    • 34250656834 scopus 로고
    • Thermal-conductivity and thermopower of vapor-grown graphite fibers
    • Heremans J, Beetz CP. Thermal-conductivity and thermopower of vapor-grown graphite fibers. Phys Rev B 1985;32(4):1981-6.
    • (1985) Phys Rev B , vol.32 , Issue.4 , pp. 1981-1986
    • Heremans, J.1    Beetz, C.P.2
  • 39
    • 43449107662 scopus 로고    scopus 로고
    • Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
    • Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 2008;3(5):270-4.
    • (2008) Nat Nanotechnol , vol.3 , Issue.5 , pp. 270-274
    • Eda, G.1    Fanchini, G.2    Chhowalla, M.3
  • 42
    • 84865007079 scopus 로고    scopus 로고
    • Detailing ionosorption over TiO2, ZrO2, and HfO2 from first principles
    • Garcia JC, Deskins NA. Detailing ionosorption over TiO2, ZrO2, and HfO2 from first principles. J Phys Chem C 2012;116(31):16573-81.
    • (2012) J Phys Chem C , vol.116 , Issue.31 , pp. 16573-16581
    • Garcia, J.C.1    Deskins, N.A.2
  • 43
    • 84892938927 scopus 로고    scopus 로고
    • Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al2O3-graphene
    • Jankovsky O, Simek P, Sedmidubsky D, Huber S, Pumera M, Sofer Z. Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al2O3-graphene. RSC Adv 2014;4(15):7418-24.
    • (2014) RSC Adv , vol.4 , Issue.15 , pp. 7418-7424
    • Jankovsky, O.1    Simek, P.2    Sedmidubsky, D.3    Huber, S.4    Pumera, M.5    Sofer, Z.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.