-
1
-
-
77953799633
-
Analysis of environmental data in datacenters
-
Technical report, HP Labs, 2007
-
L. Bautista and R. Sharma. Analysis of environmental data in datacenters. Technical report, HP Labs, 2007.
-
-
-
Bautista, L.1
Sharma, R.2
-
2
-
-
40449106252
-
In the data center, power and cooling costs more than the IT equipment it supports
-
Feb
-
C.L. Belady. In the data center, power and cooling costs more than the IT equipment it supports. Electronics Cooling, 13(1), Feb 2007.
-
(2007)
Electronics Cooling
, vol.13
, Issue.1
-
-
Belady, C.L.1
-
3
-
-
33845690624
-
Viability of dynamic cooling control in a data center environment
-
June
-
T. Boucher et al. Viability of dynamic cooling control in a data center environment. Electronic Packaging, June 2006.
-
(2006)
Electronic Packaging
-
-
Boucher, T.1
-
4
-
-
52649179212
-
-
B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. In Proc. KDD'03, pages 493-498, New York, NY, USA, 2003. ACM.
-
B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. In Proc. KDD'03, pages 493-498, New York, NY, USA, 2003. ACM.
-
-
-
-
5
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
H. Ding et al. Querying and mining of time series data: experimental comparison of representations and distance measures. VLDB J., 1(2):1542-1552, 2008.
-
(2008)
VLDB J
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
-
6
-
-
33748055767
-
Intemon: Continuous mining of sensor data in large-scale self-infrastructures
-
E. Hoke et al. Intemon: Continuous mining of sensor data in large-scale self-infrastructures. SIGOPS Oper. Syst. Rev., 40(3):38-44, 2006.
-
(2006)
SIGOPS Oper. Syst. Rev
, vol.40
, Issue.3
, pp. 38-44
-
-
Hoke, E.1
-
7
-
-
70350697804
-
Intemon: Intelligent system monitoring on large clusters
-
VLDB Endowment
-
E. Hoke, J. Sun, and C. Faloutsos. Intemon: Intelligent system monitoring on large clusters. In Proc. VLDB'06, pages 1239-1242. VLDB Endowment, 2006.
-
(2006)
Proc. VLDB'06
, pp. 1239-1242
-
-
Hoke, E.1
Sun, J.2
Faloutsos, C.3
-
8
-
-
70350668798
-
-
S. Laxman, P.S. Sastry, and K.P. Unnikrishnan. Discovering frequent episodes and learning hidden markov models: A formal connection. IEEE TKDE, 17(11):15051517, 2005.
-
S. Laxman, P.S. Sastry, and K.P. Unnikrishnan. Discovering frequent episodes and learning hidden markov models: A formal connection. IEEE TKDE, 17(11):15051517, 2005.
-
-
-
-
9
-
-
70350688083
-
Stream prediction using a generative model based on frequent episodes in event sequences
-
Las Vegas, USA, August
-
S. Laxman, V. Tankasali, and R.W. White. Stream prediction using a generative model based on frequent episodes in event sequences. In Proc. KDD'08, page 453461, Las Vegas, USA, August 2008.
-
(2008)
Proc. KDD'08
, pp. 453461
-
-
Laxman, S.1
Tankasali, V.2
White, R.W.3
-
10
-
-
49749107565
-
Failure Prediction in IBM BlueGene/L Event Logs
-
Y. Liang et al. Failure Prediction in IBM BlueGene/L Event Logs. In Proc. ICDM'07, pages 583-588, 2007.
-
(2007)
Proc. ICDM'07
, pp. 583-588
-
-
Liang, Y.1
-
12
-
-
33745781710
-
A symbolic representation of time series, with implications for streaming algorithms
-
ACM
-
J. Lin et al. A symbolic representation of time series, with implications for streaming algorithms. In Proc. DMKD'03, pages 2-11. ACM, 2003.
-
(2003)
Proc. DMKD'03
, pp. 2-11
-
-
Lin, J.1
-
13
-
-
34548093287
-
Experiencing SAX: A Novel Symbolic Representation of Time Series
-
J. Lin et al. Experiencing SAX: A Novel Symbolic Representation of Time Series. Data Min. Knowl. Discov., 15(2):107-144, 2007.
-
(2007)
Data Min. Knowl. Discov
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
-
14
-
-
77954008706
-
Demand for data puts engineers in spotlight
-
Published June 17
-
S. Lohr. Demand for data puts engineers in spotlight. New York Times. Published June 17, 2008.
-
(2008)
New York Times
-
-
Lohr, S.1
-
15
-
-
27144468394
-
Discovery of frequent episodes in event sequences
-
H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259-289, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.3
, pp. 259-289
-
-
Mannila, H.1
Toivonen, H.2
Verkamo, A.I.3
-
16
-
-
70350700881
-
Stream mining of sensor data for anomalous behavior detection in data centers
-
Technical report, HP Labs, 2008
-
M. Marwah et al. Stream mining of sensor data for anomalous behavior detection in data centers. Technical report, HP Labs, 2008.
-
-
-
Marwah, M.1
-
17
-
-
57649195702
-
Liverac: Interactive visual exploration of system management time-series data
-
New York, NY, USA, ACM
-
P. McLachlan et al. Liverac: Interactive visual exploration of system management time-series data. In Proc. CHI'08, pages 1483-1492, New York, NY, USA, 2008. ACM.
-
(2008)
Proc. CHI'08
, pp. 1483-1492
-
-
McLachlan, P.1
-
18
-
-
33745631543
-
Streaming Pattern Discovery in Multiple Time-series
-
VLDB Endowment
-
S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming Pattern Discovery in Multiple Time-series. In Proc. VLDB'05, pages 697-708. VLDB Endowment, 2005.
-
(2005)
Proc. VLDB'05
, pp. 697-708
-
-
Papadimitriou, S.1
Sun, J.2
Faloutsos, C.3
-
19
-
-
2442567436
-
-
P. Patel et al. Mining Motifs in Massive Time Series Databases. In Proc. ICDM'02, page 370, 2002.
-
P. Patel et al. Mining Motifs in Massive Time Series Databases. In Proc. ICDM'02, page 370, 2002.
-
-
-
-
20
-
-
42149177266
-
Inferring neuronal network connectivity from spike data: A temporal data mining approach
-
D. Patnaik, P.S. Sastry, and K.P. Unnikrishnan. Inferring neuronal network connectivity from spike data: A temporal data mining approach. Scientfic Programming, 16(1):49-77, 2008.
-
(2008)
Scientfic Programming
, vol.16
, Issue.1
, pp. 49-77
-
-
Patnaik, D.1
Sastry, P.S.2
Unnikrishnan, K.P.3
-
21
-
-
58549112709
-
Higher order mining
-
5-17
-
J.F. Roddick et al. Higher order mining. SIGKDD Explor. Newsl., 10(1):5-17, 2008.
-
(2008)
SIGKDD Explor. Newsl
, vol.10
, Issue.1
-
-
Roddick, J.F.1
-
22
-
-
41649090202
-
Exergy analysis of data center thermal management systems
-
A.J. Shah et al. Exergy analysis of data center thermal management systems. Journal of Heat Transfer, 130(2):021401, 2008.
-
(2008)
Journal of Heat Transfer
, vol.130
, Issue.2
, pp. 021401
-
-
Shah, A.J.1
-
23
-
-
40449110797
-
Application of exploratory data analysis (eda) techniques to temperature data in aconventional data center
-
R. Sharma et al. Application of exploratory data analysis (eda) techniques to temperature data in aconventional data center. In Proceedings of ASME IPACK'07, 2007.
-
(2007)
Proceedings of ASME IPACK'07
-
-
Sharma, R.1
-
24
-
-
77953953656
-
On building next generation data centers: Energy flow in the information technology stack
-
R. Sharma et al. On building next generation data centers: Energy flow in the information technology stack. In Proceeding of Compute 2008, 2008.
-
(2008)
Proceeding of Compute
, pp. 2008
-
-
Sharma, R.1
-
25
-
-
70350701814
-
Revealed: The environmental impact of google searches
-
Published Jan 11
-
A. Wissner-Gross. Revealed: The environmental impact of google searches. The Sunday Times. Published Jan 11, 2009.
-
(2009)
The Sunday Times
-
-
Wissner-Gross, A.1
-
26
-
-
34547991011
-
-
X. Xuan and K. Murphy. Modeling Changing Dependency Structure in Multivariate Time Series. In Proc. ICML'07, pages 1055-1062, New York, NY, USA, 2007. ACM.
-
X. Xuan and K. Murphy. Modeling Changing Dependency Structure in Multivariate Time Series. In Proc. ICML'07, pages 1055-1062, New York, NY, USA, 2007. ACM.
-
-
-
-
27
-
-
36849013559
-
-
D. Yankov et al. Detecting Time Series Motifs under Uniform Scaling. In Proc. KDD'07, pages 844-853, New York, NY, USA, 2007. ACM.
-
D. Yankov et al. Detecting Time Series Motifs under Uniform Scaling. In Proc. KDD'07, pages 844-853, New York, NY, USA, 2007. ACM.
-
-
-
|