메뉴 건너뛰기




Volumn 113, Issue 1, 2015, Pages 20-36

The role of actin-binding proteins in the control of endothelial barrier integrity

Author keywords

Actin cytoskeleton; Cell cell interactions; Endothelial cells; GTPases; Inflammation; Vascular permeability

Indexed keywords

ACTIN BINDING PROTEIN; ACTIN CAPPING PROTEIN; ACTIN RELATED PROTEIN 2-3 COMPLEX; CARRIER PROTEINS AND BINDING PROTEINS; COFILIN 1; CORTACTIN; DREBRIN; EPITHELIAL CELL ADHESION MOLECULE; EZRIN; FILAMIN; FORMIN HOMOLOGY DOMAIN PROTEIN 1; G ACTIN; GELSOLIN; GUANOSINE TRIPHOSPHATASE; HEAT SHOCK PROTEIN 27; HEAT SHOCK PROTEIN 90; LIPOPOLYSACCHARIDE; MDIA1; MOESIN; MYOSIN; MYOSIN ADENOSINE TRIPHOSPHATASE; NUCLEATION PROMOTING FACTOR; PROTEIN CAPZ; RADIXIN; TRANSFORMING GROWTH FACTOR BETA; UNCLASSIFIED DRUG; UNINDEXED DRUG; VASCULOTROPIN; VASCULOTROPIN RECEPTOR; VASODILATOR STIMULATED PHOSPHOPROTEIN; WISKOTT ALDRICH SYNDROME PROTEIN;

EID: 84922362173     PISSN: 03406245     EISSN: None     Source Type: Journal    
DOI: 10.1160/TH14-04-0298     Document Type: Review
Times cited : (108)

References (146)
  • 1
    • 84874772112 scopus 로고    scopus 로고
    • Cellular and molecular regulation of vascular permeability
    • Goddard LM, et al. Cellular and molecular regulation of vascular permeability. Thromb Haemost 2013; 109: 407-415.
    • (2013) Thromb Haemost , vol.109 , pp. 407-415
    • Goddard, L.M.1
  • 2
    • 84884149475 scopus 로고    scopus 로고
    • VE-cadherin and endothelial adherens junctions: Active guardians of vascular integrity
    • Giannotta M, et al. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Develop Cell 2013; 26: 441-454.
    • (2013) Develop Cell , vol.26 , pp. 441-454
    • Giannotta, M.1
  • 3
    • 84872233407 scopus 로고    scopus 로고
    • Tight junctions at the blood brain barrier: Physiological architecture and disease-associated dysregulation
    • Luissint AC, et al. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012; 9: 23.
    • (2012) Fluids Barriers CNS , vol.9
    • Luissint, A.C.1
  • 4
    • 84899458393 scopus 로고    scopus 로고
    • Leukocyte recruitment in inflammation: Basic concepts and new mechanistic insights based on new models and microscopic imaging technologies
    • Epub ahead of print
    • Leick M, et al. Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res 2014; Epub ahead of print.
    • (2014) Cell Tissue Res
    • Leick, M.1
  • 5
    • 80052078177 scopus 로고    scopus 로고
    • New insights into the regulation of vascular permeability
    • Chavez A, et al. New insights into the regulation of vascular permeability. Intern Rev Cell Mol Biol 2011; 290: 205-248.
    • (2011) Intern Rev Cell Mol Biol , vol.290 , pp. 205-248
    • Chavez, A.1
  • 6
    • 84872407093 scopus 로고    scopus 로고
    • New approaches to the study of sepsis
    • Ward PA. New approaches to the study of sepsis. EMBO Mol Med 2012; 4: 1234-1243.
    • (2012) EMBO Mol Med , vol.4 , pp. 1234-1243
    • Ward, P.A.1
  • 7
    • 81255195550 scopus 로고    scopus 로고
    • Ischaemia and reperfusion--from mechanism to translation
    • Eltzschig HK, Eckle T. Ischaemia and reperfusion--from mechanism to translation. Nature Med 2011; 17: 1391-1401.
    • (2011) Nature Med , vol.17 , pp. 1391-1401
    • Eltzschig, H.K.1    Eckle, T.2
  • 8
    • 59849129267 scopus 로고    scopus 로고
    • The actin cytoskeleton in endothelial cell phenotypes
    • Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 2009; 77: 53-63.
    • (2009) Microvasc Res , vol.77 , pp. 53-63
    • Prasain, N.1    Stevens, T.2
  • 9
    • 84899457910 scopus 로고    scopus 로고
    • Mechanical control of the endothelial barrier
    • Epub ahead of print
    • Oldenburg J, de Rooij J. Mechanical control of the endothelial barrier. Cell Tissue Res 2014; Epub ahead of print.
    • (2014) Cell Tissue Res
    • Oldenburg, J.1    De Rooij, J.2
  • 10
    • 77954334673 scopus 로고    scopus 로고
    • Role of GTPases in control of microvascular permeability
    • Spindler V, et al. Role of GTPases in control of microvascular permeability. Cardiovasc Res 2010; 87: 243-253.
    • (2010) Cardiovasc Res , vol.87 , pp. 243-253
    • Spindler, V.1
  • 11
    • 84874240858 scopus 로고    scopus 로고
    • Control of actin dynamics by allosteric regulation of actin binding proteins
    • Hansen MD, Kwiatkowski AV. Control of actin dynamics by allosteric regulation of actin binding proteins. Intern Rev Cell Mol Biol 2013; 303: 1-25.
    • (2013) Intern Rev Cell Mol Biol , vol.303 , pp. 1-25
    • Hansen, M.D.1    Kwiatkowski, A.V.2
  • 12
    • 80053328974 scopus 로고    scopus 로고
    • Actin dynamics and turnover in cell motility
    • Rottner K, Stradal TE. Actin dynamics and turnover in cell motility. Curr Opin Cell Biol 2011; 23: 569-578.
    • (2011) Curr Opin Cell Biol , vol.23 , pp. 569-578
    • Rottner, K.1    Stradal, T.E.2
  • 13
    • 79951556468 scopus 로고    scopus 로고
    • New mechanisms and functions of actin nucleation
    • Firat-Karalar EN, Welch MD. New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 2011; 23: 4-13.
    • (2011) Curr Opin Cell Biol , vol.23 , pp. 4-13
    • Firat-Karalar, E.N.1    Welch, M.D.2
  • 14
    • 84871519238 scopus 로고    scopus 로고
    • New insights into the regulation and cellular functions of the ARP2/3 complex
    • Rotty JD, et al. New insights into the regulation and cellular functions of the ARP2/3 complex. Nature Rev Mol Cell Biol 2013; 14: 7-12.
    • (2013) Nature Rev Mol Cell Biol , vol.14 , pp. 7-12
    • Rotty, J.D.1
  • 15
    • 50249129628 scopus 로고    scopus 로고
    • Phosphorylation of the Arp2/3 complex is necessary to nucleate actin filaments
    • LeClaire LL, 3rd, et al. Phosphorylation of the Arp2/3 complex is necessary to nucleate actin filaments. J Cell Biol 2008; 182: 647-654.
    • (2008) J Cell Biol , vol.182 , pp. 647-654
    • Leclaire, L.L.1
  • 16
    • 34247644614 scopus 로고    scopus 로고
    • Regulation of actin filament assembly by Arp2/3 complex and formins
    • Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Ann Rev Biophys Biomol Struct 2007; 36: 451-477.
    • (2007) Ann Rev Biophys Biomol Struct , vol.36 , pp. 451-477
    • Pollard, T.D.1
  • 17
    • 84863084923 scopus 로고    scopus 로고
    • Cortactin in cell migration and cancer at a glance
    • MacGrath SM, Koleske AJ. Cortactin in cell migration and cancer at a glance. J Cell Sci 2012; 125: 1621-1626.
    • (2012) J Cell Sci , vol.125 , pp. 1621-1626
    • Macgrath, S.M.1    Koleske, A.J.2
  • 18
    • 79956109409 scopus 로고    scopus 로고
    • Microtubules as platforms for assaying actin polymerisation in vivo
    • Oelkers JM, Vinzenz M, Nemethova M, et al. Microtubules as platforms for assaying actin polymerisation in vivo. PLoS One 2011; 6: e19931.
    • (2011) Plos One , vol.6
    • Oelkers, J.M.1    Vinzenz, M.2    Nemethova, M.3
  • 19
    • 69549114949 scopus 로고    scopus 로고
    • WASP and SCAR/WAVE proteins: The drivers of actin assembly
    • Pollitt AY, Insall RH. WASP and SCAR/WAVE proteins: the drivers of actin assembly. J Cell Sci 2009; 122: 2575-2578.
    • (2009) J Cell Sci , vol.122 , pp. 2575-2578
    • Pollitt, A.Y.1    Insall, R.H.2
  • 20
    • 0034624753 scopus 로고    scopus 로고
    • Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein
    • Kim AS, et al. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 2000; 404: 151-158.
    • (2000) Nature , vol.404 , pp. 151-158
    • Kim, A.S.1
  • 21
    • 31544433720 scopus 로고    scopus 로고
    • Src-dependent phosphorylation of Scar1 promotes its association with the Arp2/3 complex
    • Ardern H, et al. Src-dependent phosphorylation of Scar1 promotes its association with the Arp2/3 complex. Cell Motility Cytoskeleton 2006; 63: 6-13.
    • (2006) Cell Motility Cytoskeleton , vol.63 , pp. 6-13
    • Ardern, H.1
  • 22
    • 77949834455 scopus 로고    scopus 로고
    • A nucleator arms race: Cellular control of actin assembly
    • Campellone KG, Welch MD. A nucleator arms race: cellular control of actin assembly. Nature Rev Mol Cell Biol 2010; 11: 237-251.
    • (2010) Nature Rev Mol Cell Biol , vol.11 , pp. 237-251
    • Campellone, K.G.1    Welch, M.D.2
  • 23
    • 37249003725 scopus 로고    scopus 로고
    • Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells
    • Yang C, et al. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol 2007; 5: e317.
    • (2007) Plos Biol , vol.5
    • Yang, C.1
  • 24
    • 39449085061 scopus 로고    scopus 로고
    • The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells
    • Takeya R, et al. The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells. EMBO J 2008; 27: 618-628.
    • (2008) EMBO J , vol.27 , pp. 618-628
    • Takeya, R.1
  • 25
    • 63049113736 scopus 로고    scopus 로고
    • Regulation of cell-cell adhesion by Abi/Diaphanous complexes
    • Ryu JR, Echarri A, Li R, et al. Regulation of cell-cell adhesion by Abi/Diaphanous complexes. Mol Cell Biol 2009; 29: 1735-1748.
    • (2009) Mol Cell Biol , vol.29 , pp. 1735-1748
    • Ryu, J.R.1    Echarri, A.2    Li, R.3
  • 26
    • 77952896939 scopus 로고    scopus 로고
    • Control of actin filament treadmilling in cell motility
    • Bugyi B, Carlier MF. Control of actin filament treadmilling in cell motility. Ann Rev Biophys 2010; 39: 449-470.
    • (2010) Ann Rev Biophys , vol.39 , pp. 449-470
    • Bugyi, B.1    Carlier, M.F.2
  • 27
    • 31044443763 scopus 로고    scopus 로고
    • Model of formin-associated actin filament elongation
    • Vavylonis D, et al. Model of formin-associated actin filament elongation. Mol Cell 2006; 21: 455-466.
    • (2006) Mol Cell , vol.21 , pp. 455-466
    • Vavylonis, D.1
  • 28
    • 80052990415 scopus 로고    scopus 로고
    • Actin-depolymerizing factor homology domain: A conserved fold performing diverse roles in cytoskeletal dynamics
    • Poukkula M, et al. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton 2011; 68: 471-490.
    • (2011) Cytoskeleton , vol.68 , pp. 471-490
    • Poukkula, M.1
  • 29
    • 84879417563 scopus 로고    scopus 로고
    • Functions of cofilin in cell locomotion and invasion
    • Bravo-Cordero JJ, et al. Functions of cofilin in cell locomotion and invasion. Nature Rev Mol Cell Biol 2013; 14: 405-415.
    • (2013) Nature Rev Mol Cell Biol , vol.14 , pp. 405-415
    • Bravo-Cordero, J.J.1
  • 30
    • 14644401845 scopus 로고    scopus 로고
    • Drebrin A is a postsynaptic protein that localizes in vivo to the submembranous surface of dendritic sites forming excitatory synapses
    • Aoki C, et al. Drebrin A is a postsynaptic protein that localizes in vivo to the submembranous surface of dendritic sites forming excitatory synapses. J Comp Neurol 2005; 483: 383-402.
    • (2005) J Comp Neurol , vol.483 , pp. 383-402
    • Aoki, C.1
  • 31
    • 0032707615 scopus 로고    scopus 로고
    • Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament anchorage system in polar epithelial cells
    • Peitsch WK, et al. Drebrin is a widespread actin-associating protein enriched at junctional plaques, defining a specific microfilament anchorage system in polar epithelial cells. Eur J Cell Biol 1999; 78: 767-778.
    • (1999) Eur J Cell Biol , vol.78 , pp. 767-778
    • Peitsch, W.K.1
  • 32
    • 81855166229 scopus 로고    scopus 로고
    • From filopodia to synapses: The role of actin-capping and anticapping proteins
    • Menna E, et al. From filopodia to synapses: the role of actin-capping and anticapping proteins. Eur J Neurosci 2011; 34: 1655-1662.
    • (2011) Eur J Neurosci , vol.34 , pp. 1655-1662
    • Menna, E.1
  • 33
    • 43949143882 scopus 로고    scopus 로고
    • Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex
    • Akin O, Mullins RD. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 2008; 133: 841-851.
    • (2008) Cell , vol.133 , pp. 841-851
    • Akin, O.1    Mullins, R.D.2
  • 34
    • 84861390541 scopus 로고    scopus 로고
    • Actin-bundling proteins in cancer progression at a glance
    • Stevenson RP, et al. Actin-bundling proteins in cancer progression at a glance. J Cell Sci 2012; 125: 1073-1079.
    • (2012) J Cell Sci , vol.125 , pp. 1073-1079
    • Stevenson, R.P.1
  • 35
    • 84881422916 scopus 로고    scopus 로고
    • Force to divide: Structural and mechanical requirements for actomyosin ring contraction
    • Mendes Pinto I, et al. Force to divide: structural and mechanical requirements for actomyosin ring contraction. Biophys J 2013; 105: 547-554.
    • (2013) Biophys J , vol.105 , pp. 547-554
    • Mendes Pinto, I.1
  • 36
    • 77949328682 scopus 로고    scopus 로고
    • Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex
    • Prochniewicz E, et al. Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex. J Mol Biol 2010; 396: 501-509.
    • (2010) J Mol Biol , vol.396 , pp. 501-509
    • Prochniewicz, E.1
  • 37
    • 63449091349 scopus 로고    scopus 로고
    • Chapter 1: Roles of caldesmon in cell motility and actin cytoskeleton remodelling
    • Lin JJ, et al. Chapter 1: roles of caldesmon in cell motility and actin cytoskeleton remodelling. Intern Rev Cell Mol Biol 2009; 274: 1-68.
    • (2009) Intern Rev Cell Mol Biol , vol.274 , pp. 1-68
    • Lin, J.J.1
  • 38
    • 77954326094 scopus 로고    scopus 로고
    • Myosin light chain kinase in microvascular endothelial barrier function
    • Shen Q, et al. Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 2010; 87: 272-280.
    • (2010) Cardiovasc Res , vol.87 , pp. 272-280
    • Shen, Q.1
  • 39
    • 84876081773 scopus 로고    scopus 로고
    • Mechanosensitive systems at the cadherin-F-actin interface
    • Huveneers S, de Rooij J. Mechanosensitive systems at the cadherin-F-actin interface. J Cell Sci 2013; 126: 403-413.
    • (2013) J Cell Sci , vol.126 , pp. 403-413
    • Huveneers, S.1    De Rooij, J.2
  • 40
    • 77953123743 scopus 로고    scopus 로고
    • Alpha-Catenin as a tension transducer that induces adherens junction development
    • Yonemura S, et al. alpha-Catenin as a tension transducer that induces adherens junction development. Nature Cell Biol 2010; 12: 533-542.
    • (2010) Nature Cell Biol , vol.12 , pp. 533-542
    • Yonemura, S.1
  • 41
    • 84856156981 scopus 로고    scopus 로고
    • Afadin controls p120-catenin-ZO-1 interactions leading to endothelial barrier enhancement by oxidized phospholipids
    • Birukova AA, et al. Afadin controls p120-catenin-ZO-1 interactions leading to endothelial barrier enhancement by oxidized phospholipids. J Cell Physiol 2012; 227: 1883-1890.
    • (2012) J Cell Physiol , vol.227 , pp. 1883-1890
    • Birukova, A.A.1
  • 42
    • 33645553318 scopus 로고    scopus 로고
    • Endothelial tight junctions: Permeable barriers of the vessel wall
    • Bazzoni G. Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost 2006; 95: 36-42.
    • (2006) Thromb Haemost , vol.95 , pp. 36-42
    • Bazzoni, G.1
  • 43
    • 39849100440 scopus 로고    scopus 로고
    • Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton
    • Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008; 1778: 660-669.
    • (2008) Biochim Biophys Acta , vol.1778 , pp. 660-669
    • Hartsock, A.1    Nelson, W.J.2
  • 44
    • 79960798906 scopus 로고    scopus 로고
    • ZO proteins and redox-dependent processes
    • Gonzalez-Mariscal L, et al. ZO proteins and redox-dependent processes. Antioxid Redox Signal 2011; 15: 1235-1253.
    • (2011) Antioxid Redox Signal , vol.15 , pp. 1235-1253
    • Gonzalez-Mariscal, L.1
  • 45
    • 0030740177 scopus 로고    scopus 로고
    • Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines
    • Blum MS, et al. Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 1997; 273: H286-294.
    • (1997) Am J Physiol , vol.273 , pp. H286-H294
    • Blum, M.S.1
  • 46
    • 0344465840 scopus 로고    scopus 로고
    • Potential role of MCP-1 in endothelial cell tight junction ’opening’: Signalling via Rho and Rho kinase
    • Stamatovic SM, et al. Potential role of MCP-1 in endothelial cell tight junction ’opening’: signalling via Rho and Rho kinase. J Cell Sci 2003; 116: 4615-4628.
    • (2003) J Cell Sci , vol.116 , pp. 4615-4628
    • Stamatovic, S.M.1
  • 47
    • 79955531506 scopus 로고    scopus 로고
    • Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption
    • Yao Y, Tsirka SE. Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J Cell Sci 2011; 124: 1486-1495.
    • (2011) J Cell Sci , vol.124 , pp. 1486-1495
    • Yao, Y.1    Tsirka, S.E.2
  • 48
    • 84894044495 scopus 로고    scopus 로고
    • Reactive oxygen species-caspase-3 relationship in mediating blood-brain barrier endothelial cell hyperpermeability following oxygen-glucose deprivation and reoxygenation
    • Alluri H, Stagg HW, Wilson RL, et al. Reactive oxygen species-caspase-3 relationship in mediating blood-brain barrier endothelial cell hyperpermeability following oxygen-glucose deprivation and reoxygenation. Microcirculation 2014; 21: 187-195.
    • (2014) Microcirculation , vol.21 , pp. 187-195
    • Alluri, H.1    Stagg, H.W.2    Wilson, R.L.3
  • 49
    • 78649553696 scopus 로고    scopus 로고
    • Resveratrol protects against oxidized LDL-induced breakage of the blood-brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells
    • Lin YL, et al. Resveratrol protects against oxidized LDL-induced breakage of the blood-brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells. J Nutrition 2010; 140: 2187-2192.
    • (2010) J Nutrition , vol.140 , pp. 2187-2192
    • Lin, Y.L.1
  • 50
    • 0033597718 scopus 로고    scopus 로고
    • Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis
    • Carmeliet P, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147-157.
    • (1999) Cell , vol.98 , pp. 147-157
    • Carmeliet, P.1
  • 51
    • 84875241774 scopus 로고    scopus 로고
    • The role of VE-cadherin in vascular morphogenesis and permeability control
    • Dejana E, Vestweber D. The role of VE-cadherin in vascular morphogenesis and permeability control. Prog Mol Biol Transl Sci 2013; 116: 119-144.
    • (2013) Prog Mol Biol Transl Sci , vol.116 , pp. 119-144
    • Dejana, E.1    Vestweber, D.2
  • 52
    • 80054935637 scopus 로고    scopus 로고
    • Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability
    • Schulte D, Kuppers V, Dartsch N, et al. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J 2011; 30: 4157-4170.
    • (2011) EMBO J , vol.30 , pp. 4157-4170
    • Schulte, D.1    Kuppers, V.2    Dartsch, N.3
  • 53
    • 44349150865 scopus 로고    scopus 로고
    • Glucocorticoids increase VE-cadherin expression and cause cytoskeletal rearrangements in murine brain endothelial cEND cells
    • Blecharz KG, et al. Glucocorticoids increase VE-cadherin expression and cause cytoskeletal rearrangements in murine brain endothelial cEND cells. J Cerebral Blood Flow Metabol 2008; 28: 1139-1149.
    • (2008) J Cerebral Blood Flow Metabol , vol.28 , pp. 1139-1149
    • Blecharz, K.G.1
  • 54
    • 84875126209 scopus 로고    scopus 로고
    • P120-catenin and beta-catenin differentially regulate cadherin adhesive function
    • Oas RG, et al. p120-catenin and beta-catenin differentially regulate cadherin adhesive function. Mol Biol Cell 2013; 24: 704-714.
    • (2013) Mol Biol Cell , vol.24 , pp. 704-714
    • Oas, R.G.1
  • 55
    • 65249178992 scopus 로고    scopus 로고
    • P120-catenin inhibits VE-cadherin internalisation through a Rho-independent mechanism
    • Chiasson CM, et al. p120-catenin inhibits VE-cadherin internalisation through a Rho-independent mechanism. Mol Biol Cell 2009; 20: 1970-1980.
    • (2009) Mol Biol Cell , vol.20 , pp. 1970-1980
    • Chiasson, C.M.1
  • 56
    • 84873663363 scopus 로고    scopus 로고
    • Neural Wiskott-Aldrich syndrome protein (N-WASP)-mediated p120-catenin interaction with Arp2-Actin complex stabilizes endothelial adherens junctions
    • Rajput C, et al. Neural Wiskott-Aldrich syndrome protein (N-WASP)-mediated p120-catenin interaction with Arp2-Actin complex stabilizes endothelial adherens junctions. J Biol Chem 2013; 288: 4241-4250.
    • (2013) J Biol Chem , vol.288 , pp. 4241-4250
    • Rajput, C.1
  • 57
    • 34848855176 scopus 로고    scopus 로고
    • Transforming growth factor-beta1 effects on endothelial monolayer permeability involve focal adhesion kinase/Src
    • Lee YH, et al. Transforming growth factor-beta1 effects on endothelial monolayer permeability involve focal adhesion kinase/Src. Am J Respir Cell Mol Biol 2007; 37: 485-493.
    • (2007) Am J Respir Cell Mol Biol , vol.37 , pp. 485-493
    • Lee, Y.H.1
  • 58
    • 84885402086 scopus 로고    scopus 로고
    • Loss of focal adhesion kinase enhances endothelial barrier function and increases focal adhesions
    • Arnold KM, et al. Loss of focal adhesion kinase enhances endothelial barrier function and increases focal adhesions. Microcirculation 2013; 20: 637-649.
    • (2013) Microcirculation , vol.20 , pp. 637-649
    • Arnold, K.M.1
  • 59
    • 84892520318 scopus 로고    scopus 로고
    • ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity
    • Abu Taha A, et al. ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. Mol Biol Cell 2014; 25: 245-256.
    • (2014) Mol Biol Cell , vol.25 , pp. 245-256
    • Abu Taha, A.1
  • 60
    • 36849069902 scopus 로고    scopus 로고
    • Vinculin controls focal adhesion formation by direct interactions with talin and actin
    • Humphries JD, et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 2007; 179: 1043-1057.
    • (2007) J Cell Biol , vol.179 , pp. 1043-1057
    • Humphries, J.D.1
  • 61
    • 38349010823 scopus 로고    scopus 로고
    • Mechano-coupling and regulation of contractility by the vinculin tail domain
    • Mierke CT, et al. Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys J 2008; 94: 661-670.
    • (2008) Biophys J , vol.94 , pp. 661-670
    • Mierke, C.T.1
  • 62
    • 84859992640 scopus 로고    scopus 로고
    • Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodelling
    • Huveneers S, et al. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodelling. J Cell Biol 2012; 196: 641-652.
    • (2012) J Cell Biol , vol.196 , pp. 641-652
    • Huveneers, S.1
  • 63
    • 77951919561 scopus 로고    scopus 로고
    • Adherens junctions connect stress fibres between adjacent endothelial cells
    • Millan J, et al. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol 2010; 8: 11.
    • (2010) BMC Biol , vol.8
    • Millan, J.1
  • 64
    • 84857729635 scopus 로고    scopus 로고
    • Epithelial protein lost in neoplasm (EPLIN) interacts with alpha-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro
    • Chervin-Petinot A, et al. Epithelial protein lost in neoplasm (EPLIN) interacts with alpha-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. J Biol Chem 2012; 287: 7556-7572.
    • (2012) J Biol Chem , vol.287 , pp. 7556-7572
    • Chervin-Petinot, A.1
  • 65
    • 0037415614 scopus 로고    scopus 로고
    • EPLIN regulates actin dynamics by cross-linking and stabilizing filaments
    • Maul RS, et al. EPLIN regulates actin dynamics by cross-linking and stabilizing filaments. J Cell Biol 2003; 160: 399-407.
    • (2003) J Cell Biol , vol.160 , pp. 399-407
    • Maul, R.S.1
  • 66
    • 77953810728 scopus 로고    scopus 로고
    • Role of afadin in vascular endothelial growth factor-and sphingosine 1-phosphate-induced angiogenesis
    • Tawa H, et al. Role of afadin in vascular endothelial growth factor-and sphingosine 1-phosphate-induced angiogenesis. Circ Res 2010; 106: 1731-1742.
    • (2010) Circ Res , vol.106 , pp. 1731-1742
    • Tawa, H.1
  • 67
    • 72049132918 scopus 로고    scopus 로고
    • Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells
    • Ramirez SH, et al. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cerebral Blood Flow Metabol 2009; 29: 1933-1945.
    • (2009) J Cerebral Blood Flow Metabol , vol.29 , pp. 1933-1945
    • Ramirez, S.H.1
  • 68
    • 84870917147 scopus 로고    scopus 로고
    • Methamphetamine-induced nitric oxide promotes vesicular transport in blood-brain barrier endothelial cells
    • Martins T, Burgoyne T, Kenny BA, et al. Methamphetamine-induced nitric oxide promotes vesicular transport in blood-brain barrier endothelial cells. Neuropharmacol 2013; 65: 74-82.
    • (2013) Neuropharmacol , vol.65 , pp. 74-82
    • Martins, T.1    Burgoyne, T.2    Kenny, B.A.3
  • 69
    • 84887845785 scopus 로고    scopus 로고
    • Methamphetamine-induced occludin endocytosis is mediated by the Arp2/3 complex-regulated actin rearrangement
    • Park M, et al. Methamphetamine-induced occludin endocytosis is mediated by the Arp2/3 complex-regulated actin rearrangement. J Biol Chem 2013; 288: 33324-33334.
    • (2013) J Biol Chem , vol.288 , pp. 33324-33334
    • Park, M.1
  • 70
    • 37848998838 scopus 로고    scopus 로고
    • Angiopoietin-1 Prevents VEGF-Induced Endothelial Permeability by Sequestering Src through mDia
    • Gavard J, et al. Angiopoietin-1 Prevents VEGF-Induced Endothelial Permeability by Sequestering Src through mDia. Developm Cell 2008; 14: 25-36.
    • (2008) Developm Cell , vol.14 , pp. 25-36
    • Gavard, J.1
  • 71
    • 0033160196 scopus 로고    scopus 로고
    • Cooperation between mDia1 and ROCK in Rho-induced actin reorganisation
    • Watanabe N, et al. Cooperation between mDia1 and ROCK in Rho-induced actin reorganisation. Nature Cell Biol 1999; 1: 136-143.
    • (1999) Nature Cell Biol , vol.1 , pp. 136-143
    • Watanabe, N.1
  • 72
    • 77953419265 scopus 로고    scopus 로고
    • Mechanical tugging force regulates the size of cell-cell junctions
    • Liu Z, et al. Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci USA 2010; 107: 9944-9949.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 9944-9949
    • Liu, Z.1
  • 73
    • 77954330822 scopus 로고    scopus 로고
    • Endothelial contractile cytoskeleton and microvascular permeability
    • Shen Q, et al. Endothelial contractile cytoskeleton and microvascular permeability. Cell Health Cytoskelet 2009; 2009: 43-50.
    • (2009) Cell Health Cytoskelet , vol.2009 , pp. 43-50
    • Shen, Q.1
  • 74
    • 84893181293 scopus 로고    scopus 로고
    • Abl family kinases regulate endothelial barrier function in vitro and in mice
    • Chislock EM, Pendergast AM. Abl family kinases regulate endothelial barrier function in vitro and in mice. PLoS One 2013; 8: e85231.
    • (2013) Plos One , vol.8
    • Chislock, E.M.1    Pendergast, A.M.2
  • 75
    • 78649661062 scopus 로고    scopus 로고
    • Abl tyrosine kinase phosphorylates nonmuscle Myosin light chain kinase to regulate endothelial barrier function
    • Dudek SM, et al. Abl tyrosine kinase phosphorylates nonmuscle Myosin light chain kinase to regulate endothelial barrier function. Mol Biol Cell 2010; 21: 4042-4056.
    • (2010) Mol Biol Cell , vol.21 , pp. 4042-4056
    • Dudek, S.M.1
  • 76
    • 33749143832 scopus 로고    scopus 로고
    • Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells
    • Srinivas SP, et al. Histamine-induced phosphorylation of the regulatory light chain of myosin II disrupts the barrier integrity of corneal endothelial cells. Invest Ophthalmol Visual Sci 2006; 47: 4011-4018.
    • (2006) Invest Ophthalmol Visual Sci , vol.47 , pp. 4011-4018
    • Srinivas, S.P.1
  • 77
    • 84872371391 scopus 로고    scopus 로고
    • Hypoxia-reoxygenation-induced endothelial barrier failure: Role of RhoA, Rac1 and myosin light chain kinase
    • Aslam M, et al. Hypoxia-reoxygenation-induced endothelial barrier failure: role of RhoA, Rac1 and myosin light chain kinase. J Physiol 2013; 591: 461-473.
    • (2013) J Physiol , vol.591 , pp. 461-473
    • Aslam, M.1
  • 78
    • 84872709435 scopus 로고    scopus 로고
    • Phytoestrogen genistein protects against endothelial barrier dysfunction in vascular endothelial cells through PKA-mediated suppression of RhoA signalling
    • Jia Z, et al. Phytoestrogen genistein protects against endothelial barrier dysfunction in vascular endothelial cells through PKA-mediated suppression of RhoA signalling. Endocrinology 2013; 154: 727-737.
    • (2013) Endocrinology , vol.154 , pp. 727-737
    • Jia, Z.1
  • 79
    • 84884387786 scopus 로고    scopus 로고
    • Rap1 potentiates endothelial cell junctions by spatially controlling myosin II activity and actin organisation
    • Ando K, et al. Rap1 potentiates endothelial cell junctions by spatially controlling myosin II activity and actin organisation. J Cell Biol 2013; 202: 901-916.
    • (2013) J Cell Biol , vol.202 , pp. 901-916
    • Ando, K.1
  • 80
    • 84879993509 scopus 로고    scopus 로고
    • Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29
    • Post A, et al. Rasip1 mediates Rap1 regulation of Rho in endothelial barrier function through ArhGAP29. Proc Natl Acad Sci USA 2013; 110: 11427-11432.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 11427-11432
    • Post, A.1
  • 81
    • 84888226545 scopus 로고    scopus 로고
    • Rasip1 regulates vertebrate vascular endothelial junction stability through Epac1-Rap1 signalling
    • Wilson CW, et al. Rasip1 regulates vertebrate vascular endothelial junction stability through Epac1-Rap1 signalling. Blood 2013; 122: 3678-3690.
    • (2013) Blood , vol.122 , pp. 3678-3690
    • Wilson, C.W.1
  • 82
    • 84912080990 scopus 로고    scopus 로고
    • Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms
    • Citalán-Madrid A, et al. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1: e26938.
    • (2013) Tissue Barriers , vol.1
    • Citalán-Madrid, A.1
  • 83
    • 74149095063 scopus 로고    scopus 로고
    • Driving Rho GTPase activity in endothelial cells regulates barrier integrity
    • Beckers CM, et al. Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 2010; 103: 40-55.
    • (2010) Thromb Haemost , vol.103 , pp. 40-55
    • Beckers, C.M.1
  • 84
    • 84899430391 scopus 로고    scopus 로고
    • Rho GTPases in the regulation of pulmonary vascular barrier function
    • Duluc L, Wojciak-Stothard B. Rho GTPases in the regulation of pulmonary vascular barrier function. Cell Tissue Res 2014; 355: 675-685.
    • (2014) Cell Tissue Res , vol.355 , pp. 675-685
    • Duluc, L.1    Wojciak-Stothard, B.2
  • 85
    • 6344254520 scopus 로고    scopus 로고
    • P38 MAP kinase-dependent regulation of endothelial cell permeability
    • Borbiev T, et al. p38 MAP kinase-dependent regulation of endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol 2004; 287: L911-918.
    • (2004) Am J Physiol Lung Cell Mol Physiol , vol.287 , pp. L911-L918
    • Borbiev, T.1
  • 86
    • 77955959130 scopus 로고    scopus 로고
    • P38 MAP kinase mediates burn serum-induced endothelial barrier dysfunction: Involvement of F-actin rearrangement and L-caldesmon phosphorylation
    • Chu ZG, et al. p38 MAP kinase mediates burn serum-induced endothelial barrier dysfunction: involvement of F-actin rearrangement and L-caldesmon phosphorylation. Shock 2010; 34: 222-228.
    • (2010) Shock , vol.34 , pp. 222-228
    • Chu, Z.G.1
  • 87
    • 0036009459 scopus 로고    scopus 로고
    • Shear stress-mediated cytoskeletal remodelling and cortactin translocation in pulmonary endothelial cells
    • Birukov KG, et al. Shear stress-mediated cytoskeletal remodelling and cortactin translocation in pulmonary endothelial cells. Am J Respir Cell Mol Biol 2002; 26: 453-464.
    • (2002) Am J Respir Cell Mol Biol , vol.26 , pp. 453-464
    • Birukov, K.G.1
  • 88
    • 2642580994 scopus 로고    scopus 로고
    • Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: Roles for cortactin and myosin light chain kinase
    • Dudek SM, et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem 2004; 279: 24692-24700.
    • (2004) J Biol Chem , vol.279 , pp. 24692-24700
    • Dudek, S.M.1
  • 89
    • 77953539413 scopus 로고    scopus 로고
    • Quantitative distribution and colocalisation of non-muscle myosin light chain kinase isoforms and cortactin in human lung endothelium
    • Brown M, et al. Quantitative distribution and colocalisation of non-muscle myosin light chain kinase isoforms and cortactin in human lung endothelium. Microvasc Res 2010; 80: 75-88.
    • (2010) Microvasc Res , vol.80 , pp. 75-88
    • Brown, M.1
  • 90
    • 77958087942 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate modulation of basal permeability and acute inflammatory responses in rat venular microvessels
    • Adamson RH, et al. Sphingosine-1-phosphate modulation of basal permeability and acute inflammatory responses in rat venular microvessels. Cardiovasc Res 2010; 88: 344-351.
    • (2010) Cardiovasc Res , vol.88 , pp. 344-351
    • Adamson, R.H.1
  • 91
    • 79961150773 scopus 로고    scopus 로고
    • Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo
    • Schnoor M, et al. Cortactin deficiency is associated with reduced neutrophil recruitment but increased vascular permeability in vivo. J Exp Med 2011; 208: 1721-1735.
    • (2011) J Exp Med , vol.208 , pp. 1721-1735
    • Schnoor, M.1
  • 92
    • 33750364984 scopus 로고    scopus 로고
    • Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodelling during polymorphonuclear leukocyte adhesion and transmigration
    • Yang L, et al. Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodelling during polymorphonuclear leukocyte adhesion and transmigration. J Immunol 2006; 177: 6440-6449.
    • (2006) J Immunol , vol.177 , pp. 6440-6449
    • Yang, L.1
  • 93
    • 34748905448 scopus 로고    scopus 로고
    • RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration
    • van Buul JD, et al. RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol 2007; 178: 1279-1293.
    • (2007) J Cell Biol , vol.178 , pp. 1279-1293
    • Van Buul, J.D.1
  • 94
    • 30744433331 scopus 로고    scopus 로고
    • Ezrin/radixin/moesin proteins are phosphorylated by TNF-alpha and modulate permeability increases in human pulmonary microvascular endothelial cells
    • Koss M, et al. Ezrin/radixin/moesin proteins are phosphorylated by TNF-alpha and modulate permeability increases in human pulmonary microvascular endothelial cells. J Immunol 2006; 176: 1218-1227.
    • (2006) J Immunol , vol.176 , pp. 1218-1227
    • Koss, M.1
  • 95
    • 82755165225 scopus 로고    scopus 로고
    • Ezrin, radixin, and moesin are phosphorylated in response to 2-methoxyestradiol and modulate endothelial hyperpermeability
    • Bogatcheva NV, et al. Ezrin, radixin, and moesin are phosphorylated in response to 2-methoxyestradiol and modulate endothelial hyperpermeability. Am J Respir Cell Mol Biol 2011; 45: 1185-1194.
    • (2011) Am J Respir Cell Mol Biol , vol.45 , pp. 1185-1194
    • Bogatcheva, N.V.1
  • 96
    • 84880978335 scopus 로고    scopus 로고
    • Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin
    • Adyshev DM, et al. Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin. Am J Physiol Lung Cell Mol Physiol 2013; 305: L240-255.
    • (2013) Am J Physiol Lung Cell Mol Physiol , vol.305 , pp. L240-L255
    • Adyshev, D.M.1
  • 97
    • 80053289141 scopus 로고    scopus 로고
    • Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement
    • Adyshev DM, et al. Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement. Cell Signal 2011; 23: 2086-2096.
    • (2011) Cell Signal , vol.23 , pp. 2086-2096
    • Adyshev, D.M.1
  • 98
    • 67650079692 scopus 로고    scopus 로고
    • ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability
    • Guo X, et al. ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability. Am J Physiol Heart Circ Physiol 2009; 297: H238-246.
    • (2009) Am J Physiol Heart Circ Physiol , vol.297 , pp. H238-H246
    • Guo, X.1
  • 99
    • 84855780092 scopus 로고    scopus 로고
    • RhoA/ROCK-dependent moesin phosphorylation regulates AGEinduced endothelial cellular response
    • Wang J, et al. RhoA/ROCK-dependent moesin phosphorylation regulates AGEinduced endothelial cellular response. Cardiovasc Diabetol 2012; 11: 7.
    • (2012) Cardiovasc Diabetol , vol.11
    • Wang, J.1
  • 100
    • 68949183227 scopus 로고    scopus 로고
    • Ena/VASP: Towards resolving a pointed controversy at the barbed end
    • Bear JE, Gertler FB. Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci 2009; 122: 1947-1953.
    • (2009) J Cell Sci , vol.122 , pp. 1947-1953
    • Bear, J.E.1    Gertler, F.B.2
  • 101
    • 0036550315 scopus 로고    scopus 로고
    • Role of vasodilator-stimulated phosphoprotein in PKAinduced changes in endothelial junctional permeability
    • Comerford KM, et al. Role of vasodilator-stimulated phosphoprotein in PKAinduced changes in endothelial junctional permeability. FASEB J 2002; 16: 583-585.
    • (2002) FASEB J , vol.16 , pp. 583-585
    • Comerford, K.M.1
  • 102
    • 38349191037 scopus 로고    scopus 로고
    • The role of VASP in regulation of cAMP-and Rac 1-mediated endothelial barrier stabilisation
    • Schlegel N, Burger S, Golenhofen N, et al. The role of VASP in regulation of cAMP-and Rac 1-mediated endothelial barrier stabilisation. Am J Physiol Cell Physiol 2008; 294: C178-188.
    • (2008) Am J Physiol Cell Physiol , vol.294 , pp. C178-C188
    • Schlegel, N.1    Burger, S.2    Golenhofen, N.3
  • 103
    • 65249146677 scopus 로고    scopus 로고
    • VASP is involved in cAMP-mediated Rac 1 activation in microvascular endothelial cells
    • Schlegel N, Waschke J. VASP is involved in cAMP-mediated Rac 1 activation in microvascular endothelial cells. Am J Physiol Cell Physiol 2009; 296: C453-462.
    • (2009) Am J Physiol Cell Physiol , vol.296 , pp. C453-C462
    • Schlegel, N.1    Waschke, J.2
  • 104
    • 42049122117 scopus 로고    scopus 로고
    • Role of vasodilator-stimulated phosphoprotein in cGMPmediated protection of human pulmonary artery endothelial barrier function
    • Rentsendorj O, et al. Role of vasodilator-stimulated phosphoprotein in cGMPmediated protection of human pulmonary artery endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 2008; 294: L686-697.
    • (2008) Am J Physiol Lung Cell Mol Physiol , vol.294 , pp. L686-L697
    • Rentsendorj, O.1
  • 105
    • 35649025132 scopus 로고    scopus 로고
    • Ena/VASP is required for endothelial barrier function in vivo
    • Furman C, et al. Ena/VASP is required for endothelial barrier function in vivo. J Cell Biol 2007; 179: 761-775.
    • (2007) J Cell Biol , vol.179 , pp. 761-775
    • Furman, C.1
  • 106
    • 38349046882 scopus 로고    scopus 로고
    • Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes
    • Benz PM, et al. Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes. J Cell Biol 2008; 180: 205-219.
    • (2008) J Cell Biol , vol.180 , pp. 205-219
    • Benz, P.M.1
  • 107
    • 67649379003 scopus 로고    scopus 로고
    • Impaired integrin-mediated adhesion contributes to reduced barrier properties in VASP-deficient microvascular endothelium
    • Schlegel N, Waschke J. Impaired integrin-mediated adhesion contributes to reduced barrier properties in VASP-deficient microvascular endothelium. J Cell Physiol 2009; 220: 357-366.
    • (2009) J Cell Physiol , vol.220 , pp. 357-366
    • Schlegel, N.1    Waschke, J.2
  • 108
    • 79951790215 scopus 로고    scopus 로고
    • Vasodilator-stimulated phosphoprotein deficiency potentiates PAR-1-induced increase in endothelial permeability in mouse lungs
    • Profirovic J, et al. Vasodilator-stimulated phosphoprotein deficiency potentiates PAR-1-induced increase in endothelial permeability in mouse lungs. J Cell Physiol 2011; 226: 1255-1264.
    • (2011) J Cell Physiol , vol.226 , pp. 1255-1264
    • Profirovic, J.1
  • 109
    • 34547782309 scopus 로고    scopus 로고
    • Identification of vasodilator-stimulated phosphoprotein (VASP) as an HIF-regulated tissue permeability factor during hypoxia
    • Rosenberger P, et al. Identification of vasodilator-stimulated phosphoprotein (VASP) as an HIF-regulated tissue permeability factor during hypoxia. FASEB J 2007; 21: 2613-2621.
    • (2007) FASEB J , vol.21 , pp. 2613-2621
    • Rosenberger, P.1
  • 110
    • 84863779388 scopus 로고    scopus 로고
    • Vasodilator phosphostimulated protein (VASP) protects endothelial barrier function during hypoxia
    • Schmit MA, et al. Vasodilator phosphostimulated protein (VASP) protects endothelial barrier function during hypoxia. Inflammation 2012; 35: 566-573.
    • (2012) Inflammation , vol.35 , pp. 566-573
    • Schmit, M.A.1
  • 111
    • 72749102734 scopus 로고    scopus 로고
    • Inflammation-associated repression of vasodilator-stimulated phosphoprotein (VASP) reduces alveolar-capillary barrier function during acute lung injury
    • Henes J, et al. Inflammation-associated repression of vasodilator-stimulated phosphoprotein (VASP) reduces alveolar-capillary barrier function during acute lung injury. FASEB J 2009; 23: 4244-4255.
    • (2009) FASEB J , vol.23 , pp. 4244-4255
    • Henes, J.1
  • 112
    • 77955427718 scopus 로고    scopus 로고
    • Role of vasodilator stimulated phosphoprotein in VEGF induced blood-brain barrier permeability in endothelial cell monolayers
    • Davis B, et al. Role of vasodilator stimulated phosphoprotein in VEGF induced blood-brain barrier permeability in endothelial cell monolayers. Intern J Develop Neurosci 2010; 28: 423-428.
    • (2010) Intern J Develop Neurosci , vol.28 , pp. 423-428
    • Davis, B.1
  • 113
    • 0030926845 scopus 로고    scopus 로고
    • Characterisation of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin
    • Nieset JE, et al. Characterisation of the interactions of alpha-catenin with alpha-actinin and beta-catenin/plakoglobin. J Cell Sci 1997; 110: 1013-1022.
    • (1997) J Cell Sci , vol.110 , pp. 1013-1022
    • Nieset, J.E.1
  • 114
    • 26444551684 scopus 로고    scopus 로고
    • Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin
    • Singleton PA, et al. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J 2005; 19: 1646-1656.
    • (2005) FASEB J , vol.19 , pp. 1646-1656
    • Singleton, P.A.1
  • 115
    • 84869380206 scopus 로고    scopus 로고
    • Cadherin selectivity filter regulates endothelial sieving properties
    • Quadri SK, et al. Cadherin selectivity filter regulates endothelial sieving properties. Nature Commun 2012; 3: 1099.
    • (2012) Nature Commun , vol.3 , pp. 1099
    • Quadri, S.K.1
  • 116
    • 16644402070 scopus 로고    scopus 로고
    • Duchenne muscular dystrophy and dystrophin: Pathogenesis and opportunities for treatment
    • Nowak KJ, Davies KE. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 2004; 5: 872-876.
    • (2004) EMBO Rep , vol.5 , pp. 872-876
    • Nowak, K.J.1    Davies, K.E.2
  • 117
    • 0038407772 scopus 로고    scopus 로고
    • Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice
    • Nico B, et al. Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice. Glia 2003; 42: 235-251.
    • (2003) Glia , vol.42 , pp. 235-251
    • Nico, B.1
  • 118
    • 84888199909 scopus 로고    scopus 로고
    • Angiogenic impairment of the vascular endothelium: A novel mechanism and potential therapeutic target in muscular dystrophy
    • Palladino M, et al. Angiogenic impairment of the vascular endothelium: a novel mechanism and potential therapeutic target in muscular dystrophy. Arterioscler Thromb Vasc Biol 2013; 33: 2867-2876.
    • (2013) Arterioscler Thromb Vasc Biol , vol.33 , pp. 2867-2876
    • Palladino, M.1
  • 119
    • 33750443578 scopus 로고    scopus 로고
    • Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis
    • Ding Z, et al. Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J Cell Sci 2006; 119: 4127-4137.
    • (2006) J Cell Sci , vol.119 , pp. 4127-4137
    • Ding, Z.1
  • 120
    • 84884954084 scopus 로고    scopus 로고
    • The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs)
    • Li Z, et al. The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs). Cardiovasc Diabetol 2013; 12: 141.
    • (2013) Cardiovasc Diabetol , vol.12
    • Li, Z.1
  • 121
    • 79952322355 scopus 로고    scopus 로고
    • The filamins: Organizers of cell structure and function
    • Nakamura F, et al. The filamins: organizers of cell structure and function. Cell Adhes Migration 2011; 5: 160-169.
    • (2011) Cell Adhes Migration , vol.5 , pp. 160-169
    • Nakamura, F.1
  • 122
    • 79958752739 scopus 로고    scopus 로고
    • R-Ras interacts with filamin a to maintain endothelial barrier function
    • Griffiths GS, et al. R-Ras interacts with filamin a to maintain endothelial barrier function. J Cell Physiol 2011; 226: 2287-2296.
    • (2011) J Cell Physiol , vol.226 , pp. 2287-2296
    • Griffiths, G.S.1
  • 123
    • 70449726625 scopus 로고    scopus 로고
    • Molecular mechanisms mediating protective effect of cAMP on lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) hyperpermeability
    • Bogatcheva NV, et al. Molecular mechanisms mediating protective effect of cAMP on lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) hyperpermeability. J Cell Physiol 2009; 221: 750-759.
    • (2009) J Cell Physiol , vol.221 , pp. 750-759
    • Bogatcheva, N.V.1
  • 124
    • 84876304669 scopus 로고    scopus 로고
    • Monoubiquitination of filamin B regulates vascular endothelial growth factor-mediated trafficking of histone deacetylase 7
    • Su YT, et al. Monoubiquitination of filamin B regulates vascular endothelial growth factor-mediated trafficking of histone deacetylase 7. Mol Cell Biol 2013; 33: 1546-1560.
    • (2013) Mol Cell Biol , vol.33 , pp. 1546-1560
    • Su, Y.T.1
  • 125
    • 84874226983 scopus 로고    scopus 로고
    • Actin realignment and cofilin regulation are essential for barrier integrity during shear stress
    • Slee JB, Lowe-Krentz LJ. Actin realignment and cofilin regulation are essential for barrier integrity during shear stress. J Cell Biochem 2013; 114: 782-795.
    • (2013) J Cell Biochem , vol.114 , pp. 782-795
    • Slee, J.B.1    Lowe-Krentz, L.J.2
  • 126
    • 84880048321 scopus 로고    scopus 로고
    • Drebrin-induced stabilisation of actin filaments
    • Mikati MA, et al. Drebrin-induced stabilisation of actin filaments. J Biol Chem 2013; 288: 19926-19938.
    • (2013) J Biol Chem , vol.288 , pp. 19926-19938
    • Mikati, M.A.1
  • 127
    • 84884189701 scopus 로고    scopus 로고
    • Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation
    • 127.Worth DC, et al. Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 2013; 202: 793-806.
    • (2013) J Cell Biol , vol.202 , pp. 793-806
    • Worth, D.C.1
  • 128
    • 27744576370 scopus 로고    scopus 로고
    • Drebrin, an actin-binding, cell-type characteristic protein: Induction and localisation in epithelial skin tumors and cultured keratinocytes
    • Peitsch WK, et al. Drebrin, an actin-binding, cell-type characteristic protein: induction and localisation in epithelial skin tumors and cultured keratinocytes. J Invest Dermatol 2005; 125: 761-774.
    • (2005) J Invest Dermatol , vol.125 , pp. 761-774
    • Peitsch, W.K.1
  • 129
    • 84883316505 scopus 로고    scopus 로고
    • Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions
    • Rehm K, et al. Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. J Cell Sci 2013; 126: 3756-3769.
    • (2013) J Cell Sci , vol.126 , pp. 3756-3769
    • Rehm, K.1
  • 130
    • 84880669031 scopus 로고    scopus 로고
    • Gelsolin: The tail of a molecular gymnast
    • Nag S, et al. Gelsolin: the tail of a molecular gymnast. Cytoskeleton 2013; 70: 360-384.
    • (2013) Cytoskeleton , vol.70 , pp. 360-384
    • Nag, S.1
  • 131
    • 0032959847 scopus 로고    scopus 로고
    • Neuroprotective effects of gelsolin during murine stroke
    • Endres M, et al. Neuroprotective effects of gelsolin during murine stroke. J Clin Invest 1999; 103: 347-354.
    • (1999) J Clin Invest , vol.103 , pp. 347-354
    • Endres, M.1
  • 132
    • 0037385134 scopus 로고    scopus 로고
    • Pulmonary vascular permeability and ischaemic injury in gelsolin-deficient mice
    • Becker PM, et al. Pulmonary vascular permeability and ischaemic injury in gelsolin-deficient mice. Am J Respir Cell Mol Biol 2003; 28: 478-484.
    • (2003) Am J Respir Cell Mol Biol , vol.28 , pp. 478-484
    • Becker, P.M.1
  • 133
    • 0022483525 scopus 로고
    • Role of plasma gelsolin and the vitamin D-binding protein in clearing actin from the circulation
    • Lind SE, et al. Role of plasma gelsolin and the vitamin D-binding protein in clearing actin from the circulation. J Clin Invest 1986; 78: 736-742.
    • (1986) J Clin Invest , vol.78 , pp. 736-742
    • Lind, S.E.1
  • 134
    • 78649673863 scopus 로고    scopus 로고
    • Plasma gelsolin modulates cellular response to sphingosine 1-phosphate
    • Bucki R, et al. Plasma gelsolin modulates cellular response to sphingosine 1-phosphate. Am J Physiol Cell Physiol 2010; 299: C1516-1523.
    • (2010) Am J Physiol Cell Physiol , vol.299 , pp. C1516-C1523
    • Bucki, R.1
  • 135
    • 51349083634 scopus 로고    scopus 로고
    • The heat shock protein 90 chaperone complex: An evolving therapeutic target
    • Barginear MF, et al. The heat shock protein 90 chaperone complex: an evolving therapeutic target. Curr Cancer Drug Targets 2008; 8: 522-532.
    • (2008) Curr Cancer Drug Targets , vol.8 , pp. 522-532
    • Barginear, M.F.1
  • 136
    • 34848829167 scopus 로고    scopus 로고
    • Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis
    • Chatterjee A, et al. Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Resp Crit Care Med 2007; 176: 667-675.
    • (2007) Am J Resp Crit Care Med , vol.176 , pp. 667-675
    • Chatterjee, A.1
  • 137
    • 55249092971 scopus 로고    scopus 로고
    • Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function
    • Antonov A, et al. Heat shock protein 90 inhibitors protect and restore pulmonary endothelial barrier function. Am J Respir Cell Mol Biol 2008; 39: 551-559.
    • (2008) Am J Respir Cell Mol Biol , vol.39 , pp. 551-559
    • Antonov, A.1
  • 138
    • 42049122579 scopus 로고    scopus 로고
    • Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability
    • Chatterjee A, et al. Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. Am J Physiol Lung Cell Mol Physiol 2008; 294: L755-763.
    • (2008) Am J Physiol Lung Cell Mol Physiol , vol.294 , pp. L755-L763
    • Chatterjee, A.1
  • 139
    • 82155181711 scopus 로고    scopus 로고
    • Regulation of endothelial barrier function by TGF-beta type I receptor ALK5: Potential role of contractile mechanisms and heat shock protein 90
    • Antonov AS, et al. Regulation of endothelial barrier function by TGF-beta type I receptor ALK5: potential role of contractile mechanisms and heat shock protein 90. J Cell Physiol 2012; 227: 759-771.
    • (2012) J Cell Physiol , vol.227 , pp. 759-771
    • Antonov, A.S.1
  • 140
    • 67650364013 scopus 로고    scopus 로고
    • Modulation of HSP27 alters hypoxia-induced endothelial permeability and related signalling pathways
    • Liu T, et al. Modulation of HSP27 alters hypoxia-induced endothelial permeability and related signalling pathways. J Cell Physiol 2009; 220: 600-610.
    • (2009) J Cell Physiol , vol.220 , pp. 600-610
    • Liu, T.1
  • 141
    • 70350351213 scopus 로고    scopus 로고
    • Mechanisms for transcellular diapedesis: Probing and pathfinding by ’invadosome-like protrusions
    • Carman CV. Mechanisms for transcellular diapedesis: probing and pathfinding by ’invadosome-like protrusions’. J Cell Sci 2009; 122: 3025-3035.
    • (2009) J Cell Sci , vol.122 , pp. 3025-3035
    • Carman, C.V.1
  • 142
    • 84878628246 scopus 로고    scopus 로고
    • Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds
    • Martinelli R, et al. Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. J Cell Biol 2013; 201: 449-465.
    • (2013) J Cell Biol , vol.201 , pp. 449-465
    • Martinelli, R.1
  • 143
    • 81755180764 scopus 로고    scopus 로고
    • CAMP signalling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerisation
    • Maddugoda MP, et al. cAMP signalling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerisation. Cell Host Microbe 2011; 10: 464-474.
    • (2011) Cell Host Microbe , vol.10 , pp. 464-474
    • Maddugoda, M.P.1
  • 144
    • 41849131420 scopus 로고    scopus 로고
    • Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability
    • Jones CA, et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nature Med 2008; 14: 448-453.
    • (2008) Nature Med , vol.14 , pp. 448-453
    • Jones, C.A.1
  • 145
    • 84872046851 scopus 로고    scopus 로고
    • Effect of Robo4 on retinal endothelial permeability
    • Cheng Y, et al. Effect of Robo4 on retinal endothelial permeability. Curr Eye Res 2013; 38: 128-136.
    • (2013) Curr Eye Res , vol.38 , pp. 128-136
    • Cheng, Y.1
  • 146
    • 59649086084 scopus 로고    scopus 로고
    • Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors
    • Sheldon H, et al. Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 2009; 23: 513-522.
    • (2009) FASEB J , vol.23 , pp. 513-522
    • Sheldon, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.