메뉴 건너뛰기




Volumn 6, Issue 12, 2014, Pages 3222-3237

Molecular phylogeny of sequenced Saccharomycetes reveals polyphyly of the alternative yeast codon usage

Author keywords

Candida; Codon reassignment; Codon usage; Evolution; Genetic code

Indexed keywords

CODON; CYTOSKELETON PROTEIN; FUNGAL PROTEIN; LEUCINE; SERINE;

EID: 84922353882     PISSN: None     EISSN: 17596653     Source Type: Journal    
DOI: 10.1093/gbe/evu152     Document Type: Article
Times cited : (30)

References (55)
  • 1
    • 34247358225 scopus 로고    scopus 로고
    • Rhynie chert: A window into a lost world of complex plant-fungus interactions
    • Berbee ML, Taylor JW. 2007. Rhynie chert: a window into a lost world of complex plant-fungus interactions. New Phytol. 174:475-479.
    • (2007) New Phytol. , vol.174 , pp. 475-479
    • Berbee, M.L.1    Taylor, J.W.2
  • 2
    • 84879727622 scopus 로고    scopus 로고
    • Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification
    • Bezerra AR, et al. 2013. Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification. Proc Natl Acad Sci U S A. 110:11079-11084.
    • (2013) Proc Natl Acad Sci U S A. , vol.110 , pp. 11079-11084
    • Bezerra, A.R.1
  • 3
    • 66649105285 scopus 로고    scopus 로고
    • Evolution of pathogenicity and sexual reproduction in eight Candida genomes
    • Butler G, et al. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657-662.
    • (2009) Nature , vol.459 , pp. 657-662
    • Butler, G.1
  • 4
    • 34548133728 scopus 로고    scopus 로고
    • Predicting functionally important residues from sequence conservation
    • Capra JA, Singh M. 2007. Predicting functionally important residues from sequence conservation. Bioinformatics 23:1875-1882.
    • (2007) Bioinformatics , vol.23 , pp. 1875-1882
    • Capra, J.A.1    Singh, M.2
  • 6
    • 0034530503 scopus 로고    scopus 로고
    • Minor structural consequences of alternative CUG codon usage (Ser for Leu) in Candida albicans exoglucanase
    • Cutfield JF, Sullivan PA, Cutfield SM. 2000. Minor structural consequences of alternative CUG codon usage (Ser for Leu) in Candida albicans exoglucanase. Protein Eng. 13:735-738.
    • (2000) Protein Eng. , vol.13 , pp. 735-738
    • Cutfield, J.F.1    Sullivan, P.A.2    Cutfield, S.M.3
  • 7
    • 79954529507 scopus 로고    scopus 로고
    • ProtTest 3: Fast selection of best-fit models of protein evolution
    • Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164-1165.
    • (2011) Bioinformatics , vol.27 , pp. 1164-1165
    • Darriba, D.1    Taboada, G.L.2    Doallo, R.3    Posada, D.4
  • 8
    • 10844277854 scopus 로고    scopus 로고
    • Phylogeny and evolution of medical species of Candida and related taxa: A multigenic analysis
    • Diezmann S, Cox CJ, Schönian G, Vilgalys RJ, Mitchell TG. 2004. Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J Clin Microbiol. 42:5624-5635.
    • (2004) J Clin Microbiol. , vol.42 , pp. 5624-5635
    • Diezmann, S.1    Cox, C.J.2    Schönian, G.3    Vilgalys, R.J.4    Mitchell, T.G.5
  • 9
    • 7444237566 scopus 로고    scopus 로고
    • The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?
    • Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci U S A. 101:15386-15391.
    • (2004) Proc Natl Acad Sci U S A. , vol.101 , pp. 15386-15391
    • Douzery, E.J.P.1    Snell, E.A.2    Bapteste, E.3    Delsuc, F.4    Philippe, H.5
  • 10
    • 3042720475 scopus 로고    scopus 로고
    • Genome evolution in yeasts
    • Dujon B, et al. 2004. Genome evolution in yeasts. Nature 430:35-44.
    • (2004) Nature , vol.430 , pp. 35-44
    • Dujon, B.1
  • 11
    • 33845452848 scopus 로고    scopus 로고
    • A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis
    • Fitzpatrick DA, Logue ME, Stajich JE, Butler G. 2006. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol. 6:99.
    • (2006) BMC Evol Biol. , vol.6 , pp. 99
    • Fitzpatrick, D.A.1    Logue, M.E.2    Stajich, J.E.3    Butler, G.4
  • 12
    • 39149086991 scopus 로고    scopus 로고
    • A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans
    • Gomes AC, et al. 2007. A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol. 8:R206.
    • (2007) Genome Biol. , vol.8 , pp. R206
    • Gomes, A.C.1
  • 13
    • 84862531800 scopus 로고    scopus 로고
    • Evolution of the eukaryotic dynactin complex, the activator of cytoplasmic dynein
    • Hammesfahr B, Kollmar M. 2012. Evolution of the eukaryotic dynactin complex, the activator of cytoplasmic dynein. BMC Evol Biol. 12:95.
    • (2012) BMC Evol Biol. , vol.12 , pp. 95
    • Hammesfahr, B.1    Kollmar, M.2
  • 14
    • 79960655604 scopus 로고    scopus 로고
    • Cross-species protein sequence and gene structure prediction with fine-tuned Webscipio 2.0 and Scipio
    • Hatje K, et al. 2011. Cross-species protein sequence and gene structure prediction with fine-tuned Webscipio 2.0 and Scipio. BMC Res Notes. 4:265.
    • (2011) BMC Res Notes. , vol.4 , pp. 265
    • Hatje, K.1
  • 15
    • 0035839062 scopus 로고    scopus 로고
    • Molecular evidence for the early colonization of land by fungi and plants
    • Heckman DS, et al. 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129-1133.
    • (2001) Science , vol.293 , pp. 1129-1133
    • Heckman, D.S.1
  • 16
    • 2942568227 scopus 로고    scopus 로고
    • A molecular timescale of eukaryote evolution and the rise of complex multicellular life
    • Hedges SB, Blair JE, Venturi ML, Shoe JL. 2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol. 4:2.
    • (2004) BMC Evol Biol. , vol.4 , pp. 2
    • Hedges, S.B.1    Blair, J.E.2    Venturi, M.L.3    Shoe, J.L.4
  • 17
    • 33751381461 scopus 로고    scopus 로고
    • TimeTree: A public knowledge-base of divergence times among organisms
    • Hedges SB, Dudley J, Kumar S. 2006. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971-2972.
    • (2006) Bioinformatics , vol.22 , pp. 2971-2972
    • Hedges, S.B.1    Dudley, J.2    Kumar, S.3
  • 18
    • 30744470609 scopus 로고    scopus 로고
    • Application of phylogenetic networks in evolutionary studies
    • Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 23:254-267.
    • (2006) Mol Biol Evol. , vol.23 , pp. 254-267
    • Huson, D.H.1    Bryant, D.2
  • 19
    • 73249127952 scopus 로고    scopus 로고
    • Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans
    • Jackson AP, et al. 2009. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 19:2231-2244.
    • (2009) Genome Res. , vol.19 , pp. 2231-2244
    • Jackson, A.P.1
  • 20
    • 33947156343 scopus 로고    scopus 로고
    • Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis
    • Jeffries TW, et al. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol. 25:319-326.
    • (2007) Nat Biotechnol. , vol.25 , pp. 319-326
    • Jeffries, T.W.1
  • 21
    • 2442629464 scopus 로고    scopus 로고
    • The diploid genome sequence of Candida albicans
    • Jones T, et al. 2004. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A. 101:7329-7334.
    • (2004) Proc Natl Acad Sci U S A. , vol.101 , pp. 7329-7334
    • Jones, T.1
  • 23
    • 79451469119 scopus 로고    scopus 로고
    • Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus
    • Kurtzman CP. 2011. Phylogeny of the ascomycetous yeasts and the renaming of Pichia anomala to Wickerhamomyces anomalus. Antonie Van Leeuwenhoek 99:13-23.
    • (2011) Antonie van Leeuwenhoek , vol.99 , pp. 13-23
    • Kurtzman, C.P.1
  • 24
    • 0030907763 scopus 로고    scopus 로고
    • Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 50 end of the large-subunit (26S) ribosomal DNA gene
    • Kurtzman CP, Robnett CJ. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 50 end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol. 35:1216-1223.
    • (1997) J Clin Microbiol. , vol.35 , pp. 1216-1223
    • Kurtzman, C.P.1    Robnett, C.J.2
  • 25
    • 84880156384 scopus 로고    scopus 로고
    • Alloascoidea hylecoeti gen. Nov., comb. Nov., Alloascoidea africana comb. Nov., Ascoidea tarda sp. Nov., and Nadsonia starkeyi-henricii comb. Nov., new members of the Saccharomycotina (Ascomycota)
    • Kurtzman CP, Robnett CJ. 2013a. Alloascoidea hylecoeti gen. Nov., comb. Nov., Alloascoidea africana comb. Nov., Ascoidea tarda sp. Nov., and Nadsonia starkeyi-henricii comb. Nov., new members of the Saccharomycotina (Ascomycota). FEMS Yeast Res. 13:423-432.
    • (2013) FEMS Yeast Res. , vol.13 , pp. 423-432
    • Kurtzman, C.P.1    Robnett, C.J.2
  • 26
    • 84872388076 scopus 로고    scopus 로고
    • Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species
    • Kurtzman CP, Robnett CJ. 2013b. Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res. 13:23-33.
    • (2013) FEMS Yeast Res. , vol.13 , pp. 23-33
    • Kurtzman, C.P.1    Robnett, C.J.2
  • 27
    • 76649127721 scopus 로고    scopus 로고
    • Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces
    • Kurtzman CP, Suzuki M. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2-14.
    • (2010) Mycoscience , vol.51 , pp. 2-14
    • Kurtzman, C.P.1    Suzuki, M.2
  • 28
    • 84861686059 scopus 로고    scopus 로고
    • Draft genome sequence of the yeast Pachysolen tannophilus CBS 4044/NRRL Y-2460
    • Liu X, Kaas RS, Jensen PR, Workman M. 2012. Draft genome sequence of the yeast Pachysolen tannophilus CBS 4044/NRRL Y-2460. Eukaryot Cell. 11:827.
    • (2012) Eukaryot Cell. , vol.11 , pp. 827
    • Liu, X.1    Kaas, R.S.2    Jensen, P.R.3    Workman, M.4
  • 29
    • 0242417617 scopus 로고    scopus 로고
    • Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp
    • Massey SE, et al. 2003. Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res. 13:544-557.
    • (2003) Genome Res. , vol.13 , pp. 544-557
    • Massey, S.E.1
  • 30
    • 39149117967 scopus 로고    scopus 로고
    • A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans
    • Miranda I, et al. 2007. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans. PLoS One 2:e996.
    • (2007) PLoS One , vol.2 , pp. e996
    • Miranda, I.1
  • 31
    • 84883429281 scopus 로고    scopus 로고
    • Candida albicans CUG mistranslation is a mechanism to create cell surface variation
    • Miranda I, et al. 2013. Candida albicans CUG mistranslation is a mechanism to create cell surface variation. MBio 4:e00285-13.
    • (2013) MBio , vol.4 , pp. e00285-e00313
    • Miranda, I.1
  • 32
    • 33845605457 scopus 로고    scopus 로고
    • Pfarao: A web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase)
    • Odronitz F, Kollmar M. 2006. Pfarao: a web application for protein family analysis customized for cytoskeletal and motor proteins (CyMoBase). BMC Genomics 7:300.
    • (2006) BMC Genomics , vol.7 , pp. 300
    • Odronitz, F.1    Kollmar, M.2
  • 33
    • 37549069575 scopus 로고    scopus 로고
    • Drawing the tree of eukaryotic life based on the analysis of 2, 269 manually annotated myosins from 328 species
    • Odronitz F, Kollmar M. 2007. Drawing the tree of eukaryotic life based on the analysis of 2, 269 manually annotated myosins from 328 species. Genome Biol. 8:R196.
    • (2007) Genome Biol. , vol.8 , pp. R196
    • Odronitz, F.1    Kollmar, M.2
  • 34
    • 60849120779 scopus 로고    scopus 로고
    • WebScipio: An online tool for the determination of gene structures using protein sequences
    • Odronitz F, Pillmann H, Keller O, Waack S, Kollmar M. 2008. WebScipio: an online tool for the determination of gene structures using protein sequences. BMC Genomics 9:422.
    • (2008) BMC Genomics , vol.9 , pp. 422
    • Odronitz, F.1    Pillmann, H.2    Keller, O.3    Waack, S.4    Kollmar, M.5
  • 35
    • 0027260944 scopus 로고
    • Non-universal decoding of the leucine codon CUG in several Candida species
    • Ohama T, et al. 1993. Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res. 21:4039-4045.
    • (1993) Nucleic Acids Res. , vol.21 , pp. 4039-4045
    • Ohama, T.1
  • 36
    • 77956885678 scopus 로고    scopus 로고
    • cited 2014 May 9
    • Rambaut A, Drummond A. 2009. FigTree v1.3.1. [cited 2014 May 9]. Available from: http://tree.bio.ed.ac.uk/software/figtree/.
    • (2009) FigTree v1.3.1
    • Rambaut, A.1    Drummond, A.2
  • 37
    • 84924918287 scopus 로고    scopus 로고
    • MycoBank gearing up for new horizons
    • Robert V, et al. 2013. MycoBank gearing up for new horizons. IMA Fungus 4:371-379.
    • (2013) IMA Fungus , vol.4 , pp. 371-379
    • Robert, V.1
  • 38
    • 80052182956 scopus 로고    scopus 로고
    • Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen
    • Rocha R, Pereira PJB, Santos MAS, Macedo-Ribeiro S. 2011. Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen. Proc Natl Acad Sci U S A. 108:14091-14096.
    • (2011) Proc Natl Acad Sci U S A. , vol.108 , pp. 14091-14096
    • Rocha, R.1    Pereira, P.J.B.2    Santos, M.A.S.3    Macedo-Ribeiro, S.4
  • 39
    • 0041386108 scopus 로고    scopus 로고
    • MrBayes 3: Bayesian phylogenetic inference under mixed models
    • Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.
    • (2003) Bioinformatics , vol.19 , pp. 1572-1574
    • Ronquist, F.1    Huelsenbeck, J.P.2
  • 41
    • 0032695887 scopus 로고    scopus 로고
    • Taxonomy and ecology of the genus Candida
    • Schauer F, Hanschke R. 1999. Taxonomy and ecology of the genus Candida. Mycoses 42(Suppl 1), 12-21.
    • (1999) Mycoses , vol.42 , pp. 12-21
    • Schauer, F.1    Hanschke, R.2
  • 42
    • 84870458929 scopus 로고    scopus 로고
    • TreePL: Divergence time estimation using penalized likelihood for large phylogenies
    • Smith SA, O'Meara BC. 2012. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28:2689-2690.
    • (2012) Bioinformatics , vol.28 , pp. 2689-2690
    • Smith, S.A.1    O'Meara, B.C.2
  • 43
    • 50249100595 scopus 로고    scopus 로고
    • A rapid bootstrap algorithm for the RAxML Web servers
    • Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 57:758-771.
    • (2008) Syst Biol. , vol.57 , pp. 758-771
    • Stamatakis, A.1    Hoover, P.2    Rougemont, J.3
  • 44
    • 23144444421 scopus 로고    scopus 로고
    • AUGUSTUS: A web server for gene prediction in eukaryotes that allows user-defined constraints
    • Stanke M, Morgenstern B. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33:W465-W467.
    • (2005) Nucleic Acids Res. , vol.33 , pp. W465-W467
    • Stanke, M.1    Morgenstern, B.2
  • 45
    • 0033023336 scopus 로고    scopus 로고
    • Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida
    • Sugita T, Nakase T. 1999. Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Syst Appl Microbiol. 22:79-86.
    • (1999) Syst Appl Microbiol. , vol.22 , pp. 79-86
    • Sugita, T.1    Nakase, T.2
  • 46
  • 47
    • 0036224156 scopus 로고    scopus 로고
    • Alternative CUG codon usage (Ser for Leu) in Pichia farinosa and the effect of a mutated killer gene in Saccharomyces cerevisiae
    • Suzuki C, Kashiwagi T, Hirayama K. 2002. Alternative CUG codon usage (Ser for Leu) in Pichia farinosa and the effect of a mutated killer gene in Saccharomyces cerevisiae. Protein Eng. 15:251-255.
    • (2002) Protein Eng. , vol.15 , pp. 251-255
    • Suzuki, C.1    Kashiwagi, T.2    Hirayama, K.3
  • 48
    • 0034571905 scopus 로고    scopus 로고
    • Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization
    • Szkopińska A. 2000. Ubiquinone. Biosynthesis of quinone ring and its isoprenoid side chain. Intracellular localization. Acta Biochim Pol. 47:469-480.
    • (2000) Acta Biochim Pol. , vol.47 , pp. 469-480
    • Szkopińska, A.1
  • 49
    • 34547489084 scopus 로고    scopus 로고
    • Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments
    • Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 56:564-577.
    • (2007) Syst Biol. , vol.56 , pp. 564-577
    • Talavera, G.1    Castresana, J.2
  • 51
    • 0029069222 scopus 로고
    • Genetic code deviations in the ciliates: Evidence for multiple and independent events
    • Tourancheau AB, Tsao N, Klobutcher LA, Pearlman RE, Adoutte A. 1995. Genetic code deviations in the ciliates: evidence for multiple and independent events. EMBO J. 14:3262-3267.
    • (1995) EMBO J. , vol.14 , pp. 3262-3267
    • Tourancheau, A.B.1    Tsao, N.2    Klobutcher, L.A.3    Pearlman, R.E.4    Adoutte, A.5
  • 53
    • 84867587188 scopus 로고    scopus 로고
    • TRNA modification and genetic code variations in animal mitochondria
    • Watanabe K, Yokobori S-I. 2011. tRNA modification and genetic code variations in animal mitochondria. J Nucleic Acids. 2011:623095.
    • (2011) J Nucleic Acids. , vol.2011 , pp. 623095
    • Watanabe, K.1    Yokobori, S.-I.2
  • 54
    • 80051973860 scopus 로고    scopus 로고
    • Comparative genomics of xylose-fermenting fungi for enhanced biofuel production
    • Wohlbach DJ, et al. 2011. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci U S A. 108:13212-13217.
    • (2011) Proc Natl Acad Sci U S A. , vol.108 , pp. 13212-13217
    • Wohlbach, D.J.1
  • 55
    • 0034822301 scopus 로고    scopus 로고
    • Genetic code variations in mitochondria: Trna as a major determinant of genetic code plasticity
    • Yokobori S, Suzuki T, Watanabe K. 2001. Genetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity. J Mol Evol. 53:314-326.
    • (2001) J Mol Evol. , vol.53 , pp. 314-326
    • Yokobori, S.1    Suzuki, T.2    Watanabe, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.