-
2
-
-
84862182412
-
Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing
-
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med. 2012;2012:918267.
-
(2012)
Int J Vasc Med
, pp. 2012
-
-
Kolluru, G.K.1
Bir, S.C.2
Kevil, C.G.3
-
3
-
-
33645755859
-
Endothelial dysfunction: A comprehensive appraisal
-
Esper RJ, Nordaby RA, Vilarino JO, Paragano A, Cacharron JL, Machado RA. Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol. 2006;5:4.
-
(2006)
Cardiovasc Diabetol
, vol.5
, pp. 4
-
-
Esper, R.J.1
Nordaby, R.A.2
Vilarino, J.O.3
Paragano, A.4
Cacharron, J.L.5
Machado, R.A.6
-
4
-
-
57749177096
-
Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity
-
Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW. Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res. 2009; 335:165–189.
-
(2009)
Cell Tissue Res
, vol.335
, pp. 165-189
-
-
Bakker, W.1
Eringa, E.C.2
Sipkema, P.3
van Hinsbergh, V.W.4
-
5
-
-
80755152827
-
McArthur K, et al. MiR-146a-Mediated extracellular matrix protein production in chronic diabetes complications
-
Feng B, Chen S, McArthur K, et al. miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications. Diabetes. 2011;60:2975–2984.
-
(2011)
Diabetes
, vol.60
, pp. 2975-2984
-
-
Feng, B.1
Chen, S.2
-
6
-
-
33744782901
-
Vascular endothelial dysfunction in diabetic cardiomyopa-thy: Pathogenesis and potential treatment targets
-
Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S. Vascular endothelial dysfunction in diabetic cardiomyopa-thy: pathogenesis and potential treatment targets. Pharmacol Ther. 2006;111:384–399.
-
(2006)
Pharmacol Ther
, vol.111
, pp. 384-399
-
-
Farhangkhoee, H.1
Khan, Z.A.2
Kaur, H.3
Xin, X.4
Chen, S.5
Chakrabarti, S.6
-
7
-
-
34250174504
-
The role of epithelial-mesenchymal transition in cancer pathology
-
Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007; 39:305–318.
-
(2007)
Pathology
, vol.39
, pp. 305-318
-
-
Guarino, M.1
Rubino, B.2
Ballabio, G.3
-
8
-
-
84872694870
-
Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases
-
Piera-Velazquez S, Jimenez SA. Molecular mechanisms of endothelial to mesenchymal cell transition (EndoMT) in experimentally induced fibrotic diseases. Fibrogenesis Tissue Repair Suppl. 2012;1:S7.
-
(2012)
Fibrogenesis Tissue Repair
, vol.1
, pp. S7
-
-
Piera-Velazquez, S.1
Jimenez, S.A.2
-
9
-
-
84866506325
-
High glucose mediates endothelial-to-chondrocyte transition in human aortic endothelial cells
-
Tang R, Gao M, Wu M, Liu H, Zhang X, Liu B. High glucose mediates endothelial-to-chondrocyte transition in human aortic endothelial cells. Cardiovasc Diabetol. 2012;11:113.
-
(2012)
Cardiovasc Diabetol
, vol.11
, pp. 113
-
-
Tang, R.1
Gao, M.2
Wu, M.3
Liu, H.4
Zhang, X.5
Liu, B.6
-
10
-
-
84880412454
-
Roles of TGF-b signals in endothelial-mesenchymal transition during cardiac fibrosis
-
Yoshimatsu Y, Watabe T. Roles of TGF-b signals in endothelial-mesenchymal transition during cardiac fibrosis. Int J Inflam. 2011;2011:724080.
-
(2011)
Int J Inflam
, pp. 2011
-
-
Yoshimatsu, Y.1
Watabe, T.2
-
11
-
-
73549092294
-
Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice
-
Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009;175:1380–1388.
-
(2009)
Am J Pathol
, vol.175
, pp. 1380-1388
-
-
Li, J.1
Qu, X.2
Bertram, J.F.3
-
12
-
-
77953364227
-
Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition
-
Widyantoro B, Emoto N, Nakayama K, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation. 2010;121:2407–2418.
-
(2010)
Circulation
, vol.121
, pp. 2407-2418
-
-
Widyantoro, B.1
Emoto, N.2
Nakayama, K.3
-
13
-
-
84857824476
-
Regulation of endothelial cell plasticity by TGF-b
-
van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-b. Cell Tissue Res. 2012;347:177–186.
-
(2012)
Cell Tissue Res
, vol.347
, pp. 177-186
-
-
Van Meeteren, L.A.1
Ten Dijke, P.2
-
14
-
-
0029061401
-
Molecular regulation of atrioventricular valvuloseptal morphogenesis
-
Eisenberg LM, Markwald RR. 1995;Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res. 77:1–6.
-
(1995)
Circ Res
, vol.77
, pp. 1-6
-
-
Eisenberg, L.M.1
Markwald, R.R.2
-
15
-
-
84856171521
-
Transforming growth factor-b-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21
-
Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park DH, Thum T. Transforming growth factor-b-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol. 2012;32:361–369.
-
(2012)
Arterioscler Thromb Vasc Biol
, vol.32
, pp. 361-369
-
-
Kumarswamy, R.1
Volkmann, I.2
Jazbutyte, V.3
Dangwal, S.4
Park, D.H.5
Thum, T.6
-
16
-
-
79960217559
-
Transforming growth factor-b2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-indepen-dent signaling
-
Medici D, Potenta S, Kalluri R. Transforming growth factor-b2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-indepen-dent signaling. Biochem J. 2011; 437:515–520.
-
(2011)
Biochem J
, vol.437
, pp. 515-520
-
-
Medici, D.1
Potenta, S.2
Kalluri, R.3
-
17
-
-
56349114070
-
Snail is required for TGFb-induced endothelial mesenchymal transition of embryonic stem cell-derived endothelial cells
-
Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K. Snail is required for TGFb-induced endothelial mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci. 2008;121:3317–3324.
-
(2008)
J Cell Sci
, vol.121
, pp. 3317-3324
-
-
Kokudo, T.1
Suzuki, Y.2
Yoshimatsu, Y.3
Yamazaki, T.4
Watabe, T.5
Miyazono, K.6
-
18
-
-
84883739507
-
Snail as a potential target molecule in cardiac fibrosis: Paracrine action of endothelial
-
Lee SW, Won JY, Kim WJ, et al. Snail as a potential target molecule in cardiac fibrosis: paracrine action of endothelial cells on fibroblasts through snail and CTGF axis. Mol Ther. 2013;21:1767–1777.
-
(2013)
Mol Ther
, vol.21
, pp. 1767-1777
-
-
Lee, S.W.1
Won, J.Y.2
Kim, W.J.3
-
19
-
-
84896720813
-
Targeting epithelial-to-mesenchymal transition with met inhibitors reverts chemore-sistance in small cell lung cancer
-
Canadas I, Rojo F, Taus A, et al. Targeting epithelial-to-mesenchymal transition with met inhibitors reverts chemore-sistance in small cell lung cancer. Clin Cancer Res. 2014;20: 938–950.
-
(2014)
Clin Cancer Res
, vol.20
, pp. 938-950
-
-
Canadas, I.1
Rojo, F.2
Taus, A.3
-
20
-
-
58849144604
-
Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter
-
Lopez D, Niu G, Huber P, Carter WB. Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Arch Biochem Biophys. 2009;482:77–82.
-
(2009)
Arch Biochem Biophys
, vol.482
, pp. 77-82
-
-
Lopez, D.1
Niu, G.2
Huber, P.3
Carter, W.B.4
-
21
-
-
24944450362
-
The transcriptional repressor Snail promotes mammary tumor recurrence
-
Moody SE, Perez D, Pan TC, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 2005;8:197–209.
-
(2005)
Cancer Cell
, vol.8
, pp. 197-209
-
-
Moody, S.E.1
Perez, D.2
Pan, T.C.3
-
22
-
-
80051519486
-
Snail involves in the transforming growth factor b1-mediated epithelial-mesenchy-mal transition of retinal pigment epithelial cells
-
Li H, Wang H, Wang F, Gu Q, Xu X. Snail involves in the transforming growth factor b1-mediated epithelial-mesenchy-mal transition of retinal pigment epithelial cells. PLoS One. 2011;6:e23322.
-
(2011)
Plos One
, pp. 6
-
-
Li, H.1
Wang, H.2
Wang, F.3
Gu, Q.4
Xu, X.5
-
23
-
-
58149316623
-
Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3
-
Medici D, Hay ED, Olsen BR. Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Mol Biol Cell. 2008;19:4875–4887.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 4875-4887
-
-
Medici, D.1
Hay, E.D.2
Olsen, B.R.3
-
24
-
-
84857111170
-
Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): Differential expression of microRNAs during EndMT
-
Ghosh AK, Nagpal V, Covington JW, Michaels MA, Vaughan DE. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal. 2012;24:1031–1036.
-
(2012)
Cell Signal
, vol.24
, pp. 1031-1036
-
-
Ghosh, A.K.1
Nagpal, V.2
Covington, J.W.3
Michaels, M.A.4
Vaughan, D.E.5
-
27
-
-
33845524077
-
Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300
-
Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S. Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes. 2006; 55:3104–3111.
-
(2006)
Diabetes
, vol.55
, pp. 3104-3111
-
-
Kaur, H.1
Chen, S.2
Xin, X.3
Chiu, J.4
Khan, Z.A.5
Chakrabarti, S.6
-
28
-
-
79953225170
-
MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy
-
McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes. 2011;60:1314–1323.
-
(2011)
Diabetes
, vol.60
, pp. 1314-1323
-
-
McArthur, K.1
Feng, B.2
Wu, Y.3
Chen, S.4
Chakrabarti, S.5
-
29
-
-
84894416027
-
MiRNA-1 regulates endothelin-1 in diabetes
-
Feng B, Cao Y, Chen S, Ruiz M, Chakrabarti S. miRNA-1 regulates endothelin-1 in diabetes. Life Sci. 2014;98:18–23.
-
(2014)
Life Sci
, vol.98
, pp. 18-23
-
-
Feng, B.1
Cao, Y.2
Chen, S.3
Ruiz, M.4
Chakrabarti, S.5
-
30
-
-
84894577814
-
Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes
-
Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW II, Chakrabarti S. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med. 2014;18:415–421.
-
(2014)
J Cell Mol Med
, vol.18
, pp. 415-421
-
-
Chen, S.1
Puthanveetil, P.2
Feng, B.3
Matkovich, S.J.4
Dorn, G.5
Chakrabarti, S.6
-
31
-
-
84875487362
-
MiR-320 regulates glucose-induced gene expression in diabetes
-
549875
-
Feng B, Chakrabarti S. miR-320 regulates glucose-induced gene expression in diabetes. ISRN Endocrinol. 2012;2012:549875.
-
ISRN Endocrinol. 2012
-
-
Feng, B.1
Chakrabarti, S.2
-
32
-
-
3042767202
-
MicroRNAs: Small RNAs with a big role in gene regulation
-
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–531.
-
(2004)
Nat Rev Genet
, vol.5
, pp. 522-531
-
-
He, L.1
Hannon, G.J.2
-
33
-
-
78649448548
-
Post-transcriptional gene-expression regulation by micro RNA (miRNA) network in renal disease
-
Kaucsár T, Rácz Z, Hamar P. Post-transcriptional gene-expression regulation by micro RNA (miRNA) network in renal disease. Adv Drug Deliv Rev. 2010;62:1390–1401.
-
(2010)
Adv Drug Deliv Rev
, vol.62
, pp. 1390-1401
-
-
Kaucsár, T.1
Rácz, Z.2
Hamar, P.3
-
34
-
-
77956230322
-
The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer?
-
Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–677.
-
(2010)
EMBO Rep
, vol.11
, pp. 670-677
-
-
Brabletz, S.1
Brabletz, T.2
-
35
-
-
84878655790
-
MiRNA-200b represses transforming growth factor-b1-induced EMT and fibronectin expression in kidney proximal tubular cells
-
Tang O, Chen XM, Shen S, Hahn M, Pollock CA. MiRNA-200b represses transforming growth factor-b1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am J Physiol Renal Physiol. 2013;304:F1266–273.
-
(2013)
Am J Physiol Renal Physiol
, vol.304
, pp. F1266-F1273
-
-
Tang, O.1
Chen, X.M.2
Shen, S.3
Hahn, M.4
Pollock, C.A.5
-
36
-
-
84857631069
-
MiR-200b is involved in TGF-b signaling to regulate mammalian palate development
-
Shin JO, Lee JM, Cho KW, et al. MiR-200b is involved in TGF-b signaling to regulate mammalian palate development. Histo-chem Cell Biol. 2012;137:67–78.
-
(2012)
Histo-Chem Cell Biol
, vol.137
, pp. 67-78
-
-
Shin, J.O.1
Lee, J.M.2
Cho, K.W.3
-
37
-
-
75449100509
-
MiR133a regulates cardiomyocyte hypertrophy in diabetes
-
Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev. 2010;26:40–49.
-
(2010)
Diabetes Metab Res Rev
, vol.26
, pp. 40-49
-
-
Feng, B.1
Chen, S.2
George, B.3
Feng, Q.4
Chakrabarti, S.5
-
38
-
-
0030965208
-
Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice
-
Schlaeger TM, Bartunkova S, Lawitts JA. Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A. 1997;94: 3058–3063.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 3058-3063
-
-
Schlaeger, T.M.1
Bartunkova, S.2
Lawitts, J.A.3
-
39
-
-
8644263977
-
Overexpression of focal adhesion kinase in vascular endothelial cells promotes angiogenesis in transgenic mice
-
Peng X, Ueda H, Zhou H. Overexpression of focal adhesion kinase in vascular endothelial cells promotes angiogenesis in transgenic mice. Cardiovasc Res. 2004;64:421–430.
-
(2004)
Cardiovasc Res
, vol.64
, pp. 421-430
-
-
Peng, X.1
Ueda, H.2
Zhou, H.3
-
40
-
-
84860898777
-
Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats
-
Wang C, George B, Chen S, Feng B, Li X, Chakrabarti S. Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. Diabetes Metab Res Rev. 2012;28: 329–337.
-
(2012)
Diabetes Metab Res Rev
, vol.28
, pp. 329-337
-
-
Wang, C.1
George, B.2
Chen, S.3
Feng, B.4
Li, X.5
Chakrabarti, S.6
-
41
-
-
0033784843
-
The transcription factor Snail controls epithelial-mesenchymal transitions by repressing Ecadherin expression
-
Cano A, Perez-Moreno MA, Rodrigo I. The transcription factor Snail controls epithelial-mesenchymal transitions by repressing Ecadherin expression. Nat Cell Biol. 2000;2:76–83.
-
(2000)
Nat Cell Biol
, vol.2
, pp. 76-83
-
-
Cano, A.1
Perez-Moreno, M.A.2
Rodrigo, I.3
-
42
-
-
79959788211
-
Endothelial dysfunction in diabetes: The role of reparatory mechanisms
-
Avogaro A, Albiero M, Menegazzo L, de Kreutzenberg S, Fadini GP. Endothelial dysfunction in diabetes: the role of reparatory mechanisms. Diabetes Care Suppl 2. 2011;34:S285–290.
-
(2011)
Diabetes Care
, vol.34
, pp. S285-S290
-
-
Avogaro, A.1
Albiero, M.2
Menegazzo, L.3
De Kreutzenberg, S.4
Fadini, G.P.5
-
43
-
-
74149085153
-
Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis
-
Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 2010; 48:1–15.
-
(2010)
Free Radic Biol Med
, vol.48
, pp. 1-15
-
-
Liu, R.M.1
Gaston Pravia, K.A.2
-
44
-
-
84875481512
-
Oxidative-stress-induced epigenetic changes in chronic diabetic complications
-
Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol. 2013;91:213–220.
-
(2013)
Can J Physiol Pharmacol
, vol.91
, pp. 213-220
-
-
Feng, B.1
Ruiz, M.A.2
Chakrabarti, S.3
-
45
-
-
73649093379
-
Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells
-
Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab. 2010;298:E127–E137.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. E127-E137
-
-
Chen, S.1
Feng, B.2
George, B.3
Chakrabarti, R.4
Chen, M.5
Chakrabarti, S.6
-
46
-
-
20044376702
-
The pathobiology of diabetic complications: A unifying mechanism
-
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–1625.
-
(2005)
Diabetes
, vol.54
, pp. 1615-1625
-
-
Brownlee, M.1
-
47
-
-
0034693434
-
Isolation of endothelial cells from murine tissue
-
Marelli-Berg FM, Peek E, Lidington EA, Stauss HJ, Lechler RI. Isolation of endothelial cells from murine tissue. J Immunol Methods. 2000;244:205–15.
-
(2000)
J Immunol Methods
, vol.244
, pp. 205-215
-
-
Marelli-Berg, F.M.1
Peek, E.2
Lidington, E.A.3
Stauss, H.J.4
Lechler, R.I.5
|