메뉴 건너뛰기




Volumn 57, Issue 2, 2010, Pages 353-362

Robust Detection of Premature Ventricular Contractions Using a Wave-Based Bayesian Framework

Author keywords

Characteristic waves; ECG; extended Kalman filter (EKF); premature ventricular contraction (PVC); signal fidelity; signal quality; wave based dynamical model

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; ELECTROCARDIOGRAPHY; FACTUAL DATABASE; HEART VENTRICLE EXTRASYSTOLE; HUMAN; METHODOLOGY; NORMAL DISTRIBUTION; SIGNAL PROCESSING;

EID: 77950345052     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2009.2031243     Document Type: Article
Times cited : (119)

References (41)
  • 2
    • 33644842283 scopus 로고    scopus 로고
    • Abnormal heart rate turbulence predicts the initiation of ventricular arrhythmias
    • I. Atsushi, M. Hwa, A. Hassankhani, T. Liu, and S. M. Narayan, “Abnormal heart rate turbulence predicts the initiation of ventricular arrhythmias,” Pacing Clin. Electrophysiol., vol. 11, pp. 1189–1197, 2005.
    • (2005) Pacing Clin. Electrophysiol. , vol.11 , pp. 1189-1197
    • Atsushi, I.1    Hwa, M.2    Hassankhani, A.3    Liu, T.4    Narayan, S.M.5
  • 3
    • 84955649852 scopus 로고    scopus 로고
    • Heart rate turbulence on Holter
    • M. Malik and A. J. Camm, Eds. New York: Futura, ch. 20
    • R. Schneider, P. Barthel, and M. Watanabe, “Heart rate turbulence on Holter,” in Dynamic Electrocardiography, M. Malik and A. J. Camm, Eds. New York: Futura, 2004, ch. 20, pp. 190–193.
    • (2004) Dynamic Electrocardiography , pp. 190-193
    • Schneider, R.1    Barthel, P.2    Watanabe, M.3
  • 5
    • 0020948396 scopus 로고
    • Development and evaluation of a 2-lead ECG analysis program
    • G. B. Moody and R. G. Mark, “Development and evaluation of a 2-lead ECG analysis program,” in Proc. Comput. Cardiol., 1982, pp. 39–44.
    • (1982) Proc. Comput. Cardiol. , pp. 39-44
    • Moody, G.B.1    Mark, R.G.2
  • 6
    • 2942709662 scopus 로고    scopus 로고
    • Classification of heartbeats using ECG morphology and heartbeat interval features
    • Jul.
    • P. D. Chazal, M. O'Dwyer, and R. B. Reilly, “Classification of heartbeats using ECG morphology and heartbeat interval features,” IEEE Trans. Biomed. Eng., vol. 51, no. 7, pp. 1196–1206, Jul. 2004.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.7 , pp. 1196-1206
    • Chazal, P.D.1    O'Dwyer, M.2    Reilly, R.B.3
  • 7
    • 0024720695 scopus 로고
    • QRS morphology representation and noise estimation using the Karhunen-Loéve transform
    • G. B. Moody and R. G. Mark, “QRS morphology representation and noise estimation using the Karhunen-Loéve transform,” in Proc. Comput. Cardiol., 1989, pp. 269–272.
    • (1989) Proc. Comput. Cardiol. , pp. 269-272
    • Moody, G.B.1    Mark, R.G.2
  • 8
    • 33845868473 scopus 로고    scopus 로고
    • Classification of electrocardiogram using hidden markov models
    • W. T. Cheng and K. L. Chan, “Classification of electrocardiogram using hidden markov models,” in Proc. 20th Annu. Int. Conf. IEEE EMBS, 1998, vol. 20, pp. 143–146.
    • (1998) Proc. 20th Annu. Int. Conf. IEEE EMBS , vol.20 , pp. 143-146
    • Cheng, W.T.1    Chan, K.L.2
  • 9
    • 0025483033 scopus 로고
    • An approach to Cardiac arrhythmia analysis using hidden Markov models
    • Sep.
    • D. A. Coast, R. M. Stern, G. G. Cano, and S. A. Briller, “An approach to Cardiac arrhythmia analysis using hidden Markov models,” IEEE Trans. Biomed. Eng., vol. 37, no. 9, pp. 826–835, Sep. 1990.
    • (1990) IEEE Trans. Biomed. Eng. , vol.37 , Issue.9 , pp. 826-835
    • Coast, D.A.1    Stern, R.M.2    Cano, G.G.3    Briller, S.A.4
  • 10
    • 33746630271 scopus 로고    scopus 로고
    • ECG signal analysis through hidden Markov models
    • Aug.
    • R. V. Andreão, B. Dorizzi, and J. Boudy, “ECG signal analysis through hidden Markov models,” IEEE Trans. Biomed. Eng., vol. 53, no. 8, pp. 1541–1549, Aug. 2006.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , Issue.8 , pp. 1541-1549
    • Andreão, R.V.1    Dorizzi, B.2    Boudy, J.3
  • 11
    • 0031294299 scopus 로고    scopus 로고
    • Beat detection and classification of ECG using self organizing maps
    • M. R. Risk, J. F. Sobh, and J. P. Saul, “Beat detection and classification of ECG using self organizing maps,” in Proc. 19th Int. Conf. IEEE EMBS, 1997, vol. 19, pp. 89–91.
    • (1997) Proc. 19th Int. Conf. IEEE EMBS , vol.19 , pp. 89-91
    • Risk, M.R.1    Sobh, J.F.2    Saul, J.P.3
  • 12
    • 0029256491 scopus 로고
    • Comparing wavelet transforms for recognizing cardiac patterns
    • Mar./Apr.
    • L. Senhadji, G. Carrault, J. J. Bellanger, and G. Passariello, “Comparing wavelet transforms for recognizing cardiac patterns,” IEEE Eng. Med. Biol. Mag., vol. 14, no. 2, pp. 167–173, Mar./Apr. 1995.
    • (1995) IEEE Eng. Med. Biol. Mag. , vol.14 , Issue.2 , pp. 167-173
    • Senhadji, L.1    Carrault, G.2    Bellanger, J.J.3    Passariello, G.4
  • 13
    • 0032940127 scopus 로고    scopus 로고
    • ECG beat detection using filter banks
    • Feb.
    • X. Alfonso and T. Q. Nguyen, “ECG beat detection using filter banks,” IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 192–202, Feb. 1999.
    • (1999) IEEE Trans. Biomed. Eng. , vol.46 , Issue.2 , pp. 192-202
    • Alfonso, X.1    Nguyen, T.Q.2
  • 14
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ECG morphology and heartbeat interval features
    • Jul.
    • P. D. Chazal, M. O'Dwyer, and R. B. Reilly, “Automatic classification of heartbeats using ECG morphology and heartbeat interval features,” IEEE Trans. Biomed. Eng., vol. 51, no. 7, pp. 1196–1206, Jul. 2004.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.7 , pp. 1196-1206
    • Chazal, P.D.1    O'Dwyer, M.2    Reilly, R.B.3
  • 15
    • 33644995117 scopus 로고    scopus 로고
    • The comparison of different feed forward neural network architectures for ECG signal diagnosis
    • H. G. Hosseini, D. Luo, and K. J. Reynolds, “The comparison of different feed forward neural network architectures for ECG signal diagnosis,” Med. Eng. Phys., vol. 28, pp. 372–378, 2006.
    • (2006) Med. Eng. Phys. , vol.28 , pp. 372-378
    • Hosseini, H.G.1    Luo, D.2    Reynolds, K.J.3
  • 16
    • 0030131032 scopus 로고    scopus 로고
    • Classification of cardiac arrhythmias using fuzzy ARTMAP
    • Apr.
    • F. M. Ham and S. Han, “Classification of cardiac arrhythmias using fuzzy ARTMAP,” IEEE Trans. Biomed. Eng., vol. 43, no. 4, pp. 425–430, Apr. 1996.
    • (1996) IEEE Trans. Biomed. Eng. , vol.43 , Issue.4 , pp. 425-430
    • Ham, F.M.1    Han, S.2
  • 17
    • 7044263116 scopus 로고    scopus 로고
    • Ranking of pattern recognition parameters for premature ventricular contractions classification by neural networks
    • I. Christov and G. Bortolan, “Ranking of pattern recognition parameters for premature ventricular contractions classification by neural networks,” Physiol. Meas., vol. 25, pp. 1281–1290, 2004.
    • (2004) Physiol. Meas. , vol.25 , pp. 1281-1290
    • Christov, I.1    Bortolan, G.2
  • 18
    • 33847109827 scopus 로고    scopus 로고
    • Comparison of four methods for premature ventricular contraction and normal beat clustering
    • G. Bortolan, I. Jekova, and I. Christov, “Comparison of four methods for premature ventricular contraction and normal beat clustering,” in Proc. Comp. Cardiol., 2005, vol. 32, pp. 921–924.
    • (2005) Proc. Comp. Cardiol. , vol.32 , pp. 921-924
    • Bortolan, G.1    Jekova, I.2    Christov, I.3
  • 19
    • 33845865323 scopus 로고    scopus 로고
    • Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features
    • Dec.
    • O. T. Inan, L. Giovangrandi, and G. T. A. Kovacs, “Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features,” IEEE Trans. Biomed. Eng., vol. 53, no. 12, pp. 2507–2515, Dec. 2006.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , Issue.12 , pp. 2507-2515
    • Inan, O.T.1    Giovangrandi, L.2    Kovacs, G.T.A.3
  • 20
    • 61849161123 scopus 로고    scopus 로고
    • Automated patient-specific classification of premature ventricular contractions
    • T. Ince, S. Kiranyaz, and M. Gabbouj, “Automated patient-specific classification of premature ventricular contractions,” in Proc. 30th Int. Conf. IEEE EMBS, 2008, pp. 5474–5477.
    • (2008) Proc. 30th Int. Conf. IEEE EMBS , pp. 5474-5477
    • Ince, T.1    Kiranyaz, S.2    Gabbouj, M.3
  • 21
    • 2942746358 scopus 로고    scopus 로고
    • Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG
    • Jul.
    • L. Y. Shyu, Y. H. Wu, and W. Hu, “Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG,” IEEE Trans. Biomed. Eng., vol. 51, no. 7, pp. 1269–1273, Jul. 2004.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , Issue.7 , pp. 1269-1273
    • Shyu, L.Y.1    Wu, Y.H.2    Hu, W.3
  • 22
    • 85008033265 scopus 로고    scopus 로고
    • Automatic detection of premature ventricular contraction using quantum neural networks
    • J. Zhou, “Automatic detection of premature ventricular contraction using quantum neural networks,” in Proc. BIBE, 2003, pp. 1–5.
    • (2003) Proc. BIBE , pp. 1-5
    • Zhou, J.1
  • 23
    • 18744365789 scopus 로고    scopus 로고
    • Premature ventricular contraction classification by the Kth nearest-neighbours rule
    • I. Christov, I. Jekova, and G. Bortolan, “Premature ventricular contraction classification by the Kth nearest-neighbours rule,” Physiol. Meas., vol. 26, pp. 123–130, 2005.
    • (2005) Physiol. Meas. , vol.26 , pp. 123-130
    • Christov, I.1    Jekova, I.2    Bortolan, G.3
  • 24
    • 1542376881 scopus 로고    scopus 로고
    • Premature ventricular contraction beat detection based on symbolic dynamics analysis
    • L. Zhao, M. Wiggins, and G. Vachtsevanos, “Premature ventricular contraction beat detection based on symbolic dynamics analysis,” in Proc. IASTED, 2003, pp. 48–50.
    • (2003) Proc. IASTED , pp. 48-50
    • Zhao, L.1    Wiggins, M.2    Vachtsevanos, G.3
  • 25
    • 62249083229 scopus 로고    scopus 로고
    • Detecting premature ventricular contractions in ECG Signals with Gaussian processes
    • F. Melgani and Y. Bazi, “Detecting premature ventricular contractions in ECG Signals with Gaussian processes,” in Proc. Comp. Cardiol., 2008, vol. 35, pp. 237–240.
    • (2008) Proc. Comp. Cardiol. , vol.35 , pp. 237-240
    • Melgani, F.1    Bazi, Y.2
  • 26
    • 36348946459 scopus 로고    scopus 로고
    • A nonlinear Bayesian filtering framework for ECG denoising
    • Dec.
    • R. Sameni, M. B. Shamsollahi, C. Jutten, and G. D. Clifford, “A nonlinear Bayesian filtering framework for ECG denoising,” IEEE Trans. Biomed. Eng., vol. 54, no. 12, pp. 2172–2185, Dec. 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.12 , pp. 2172-2185
    • Sameni, R.1    Shamsollahi, M.B.2    Jutten, C.3    Clifford, G.D.4
  • 27
    • 45749105986 scopus 로고    scopus 로고
    • Model-based Bayesian filtering of cardiac contaminants from biomedical recordings
    • R. Sameni, M. B. Shamsollahi, and C. Jutten, “Model-based Bayesian filtering of cardiac contaminants from biomedical recordings,” Physiol. Meas., vol. 29, pp. 595–613, 2008.
    • (2008) Physiol. Meas. , vol.29 , pp. 595-613
    • Sameni, R.1    Shamsollahi, M.B.2    Jutten, C.3
  • 28
    • 0037340466 scopus 로고    scopus 로고
    • A dynamic model for generating synthetic electrocardiogram signals
    • Mar.
    • P. E. McSharry, G. D. Clifford, L. Tarassenko, and L. A. Smith, “A dynamic model for generating synthetic electrocardiogram signals,” IEEE Trans. Biomed. Eng., vol. 50, no. 3, pp. 289–294, Mar. 2003.
    • (2003) IEEE Trans. Biomed. Eng. , vol.50 , Issue.3 , pp. 289-294
    • McSharry, P.E.1    Clifford, G.D.2    Tarassenko, L.3    Smith, L.A.4
  • 29
    • 33646573760 scopus 로고    scopus 로고
    • Model-based filtering, compression and classification of the ECG
    • G. D. Clifford, A. Shoeb, P. E. McSharry, and B. A. Janz, “Model-based filtering, compression and classification of the ECG,” Int. J. Bioelectromagn., vol. 7, no. 1, pp. 158–161, 2005.
    • (2005) Int. J. Bioelectromagn. , vol.7 , Issue.1 , pp. 158-161
    • Clifford, G.D.1    Shoeb, A.2    McSharry, P.E.3    Janz, B.A.4
  • 30
    • 57649236021 scopus 로고    scopus 로고
    • ECG denoising using parameters of ECG dynamical model as the states of an extended Kalman filter
    • O. Sayadi, R. Sameni, and M. B. Shamsollahi, “ECG denoising using parameters of ECG dynamical model as the states of an extended Kalman filter,” in Proc. 29th Int. Conf. IEEE EMBS, 2007, pp. 2548–2551.
    • (2007) Proc. 29th Int. Conf. IEEE EMBS , pp. 2548-2551
    • Sayadi, O.1    Sameni, R.2    Shamsollahi, M.B.3
  • 31
    • 50049104061 scopus 로고    scopus 로고
    • ECG denoising and compression using a modified extended Kalman filter structure
    • Sep.
    • O. Sayadi and M. B. Shamsollahi, “ECG denoising and compression using a modified extended Kalman filter structure,” IEEE Trans. Biomed. Eng., vol. 55, no. 9, pp. 2240–2248, Sep. 2008.
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , Issue.9 , pp. 2240-2248
    • Sayadi, O.1    Shamsollahi, M.B.2
  • 32
    • 63649093019 scopus 로고    scopus 로고
    • A model-based Bayesian framework for ECG beat segmentation
    • O. Sayadi and M. B. Shamsollahi, “A model-based Bayesian framework for ECG beat segmentation,” Physiol. Meas., vol. 30, pp. 335–352, 2009.
    • (2009) Physiol. Meas. , vol.30 , pp. 335-352
    • Sayadi, O.1    Shamsollahi, M.B.2
  • 38
    • 0004254082 scopus 로고    scopus 로고
    • Jun. 13, [Online]. Available: http://physionet.org/physiobank/database/mitdb/
    • The MIT-BIH Arrhythmia Database. (2009, Jun. 13). [Online]. Available: http://physionet.org/physiobank/database/mitdb/
    • (2009) The MIT-BIH Arrhythmia Database
  • 39
    • 14844283547 scopus 로고    scopus 로고
    • PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
    • Jun. 13, [Online], Available: http://circ.ahajournals.org/cgi/content/full/101/23/e215]
    • A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. (2000, Jun. 13). “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” Circulation. [Online]. 101(23), pp. e215–e220. Available: http://circ.ahajournals.org/cgi/content/full/101/23/e215]
    • (2000) Circulation , vol.101 , Issue.23 , pp. e215-e220
    • Goldberger, A.L.1    Amaral, L.A.N.2    Glass, L.3    Hausdorff, J.M.4    Ivanov, P.C.5    Mark, R.G.6    Mietus, J.E.7    Moody, G.B.8    Peng, C.-K.9    Stanley, H.E.10
  • 40
    • 0000873069 scopus 로고
    • A method for the solution of certain problems in least squares
    • K. Levenberg, “A method for the solution of certain problems in least squares,” Quart. Appl. Math., vol. 2, pp. 164–168, 1944.
    • (1944) Quart. Appl. Math. , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 41
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of nonlinear parameters
    • D. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” SIAM J. Appl. Math., vol. 11, pp. 431–441, 1963.
    • (1963) SIAM J. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.