메뉴 건너뛰기




Volumn 30, Issue 2, 2008, Pages 248-257

Assessment and comparison of different methods for heartbeat classification

Author keywords

Automatic heartbeat classification; Discriminant analysis; Fuzzy logic; Kth nearest neighbour rule; Neural networks

Indexed keywords

DATABASE SYSTEMS; DISCRIMINANT ANALYSIS; FUZZY LOGIC; IMAGE CLASSIFICATION; NEURAL NETWORKS; SIGNAL ANALYSIS;

EID: 38149072227     PISSN: 13504533     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.medengphy.2007.02.003     Document Type: Article
Times cited : (92)

References (27)
  • 1
    • 33747780517 scopus 로고    scopus 로고
    • Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification
    • Christov I., Gómez-Herrero G., Krasteva V., Jekova I., Gotchev A., and Egiazarian K. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification. Med Eng Phys 28 (2006) 876-887
    • (2006) Med Eng Phys , vol.28 , pp. 876-887
    • Christov, I.1    Gómez-Herrero, G.2    Krasteva, V.3    Jekova, I.4    Gotchev, A.5    Egiazarian, K.6
  • 2
    • 33847109827 scopus 로고    scopus 로고
    • Comparison of four methods for premature ventricular contractions and normal beats clustering
    • Bortolan G., Jekova I., and Christov I. Comparison of four methods for premature ventricular contractions and normal beats clustering. Comput Cardiol 32 (2005) 921-924
    • (2005) Comput Cardiol , vol.32 , pp. 921-924
    • Bortolan, G.1    Jekova, I.2    Christov, I.3
  • 3
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ECG morphology and heartbeat interval features
    • Chazal P., O'Dwyer M., and Reilly R.B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 51 (2004) 1196-1206
    • (2004) IEEE Trans Biomed Eng , vol.51 , pp. 1196-1206
    • Chazal, P.1    O'Dwyer, M.2    Reilly, R.B.3
  • 4
    • 24044482382 scopus 로고    scopus 로고
    • Pattern recognition and optimal parameter selection in premature ventricular contraction classification
    • Jekova I., Bortolan G., and Christov I. Pattern recognition and optimal parameter selection in premature ventricular contraction classification. Comput Cardiology 31 (2004) 357-360
    • (2004) Comput Cardiology , vol.31 , pp. 357-360
    • Jekova, I.1    Bortolan, G.2    Christov, I.3
  • 5
    • 7044263116 scopus 로고    scopus 로고
    • Ranking of pattern recognition parameters for premature ventricular contraction classification by neural networks
    • Christov I., and Bortolan G. Ranking of pattern recognition parameters for premature ventricular contraction classification by neural networks. Physiol Meas 25 (2004) 1281-1290
    • (2004) Physiol Meas , vol.25 , pp. 1281-1290
    • Christov, I.1    Bortolan, G.2
  • 7
    • 0034470548 scopus 로고    scopus 로고
    • Cardiac arrhythmia classification using neural networks
    • Al-Nashash H. Cardiac arrhythmia classification using neural networks. Technol Health Care 8 (2000) 363-372
    • (2000) Technol Health Care , vol.8 , pp. 363-372
    • Al-Nashash, H.1
  • 8
    • 0032191932 scopus 로고    scopus 로고
    • ECG pattern recognition and classification using non-linear transformations and neural networks: a review
    • Maglaveras N., Stamkopoulos T., Diamantaras K., Pappas C., and Strintzis M. ECG pattern recognition and classification using non-linear transformations and neural networks: a review. Int J Med Inform 52 (1998) 191-208
    • (1998) Int J Med Inform , vol.52 , pp. 191-208
    • Maglaveras, N.1    Stamkopoulos, T.2    Diamantaras, K.3    Pappas, C.4    Strintzis, M.5
  • 9
    • 0030131032 scopus 로고    scopus 로고
    • Classification of cardiac arrhythmias using fuzzy ARTMAP
    • Ham F.M., and Han S. Classification of cardiac arrhythmias using fuzzy ARTMAP. IEEE Trans Biomed Eng 43 4 (1996) 425-430
    • (1996) IEEE Trans Biomed Eng , vol.43 , Issue.4 , pp. 425-430
    • Ham, F.M.1    Han, S.2
  • 11
    • 0036955058 scopus 로고    scopus 로고
    • A real time QRS complex classification method using Mahalanobis distance
    • Moreas J.C.T.B., Seixas M.O., Vilani F.N., and Costa E.V. A real time QRS complex classification method using Mahalanobis distance. Comput Cardiol 29 (2002) 201-204
    • (2002) Comput Cardiol , vol.29 , pp. 201-204
    • Moreas, J.C.T.B.1    Seixas, M.O.2    Vilani, F.N.3    Costa, E.V.4
  • 12
    • 18744365789 scopus 로고    scopus 로고
    • Premature ventricular contraction classification by the Kth nearest neighbours rule
    • Christov I., Jekova I., and Bortolan G. Premature ventricular contraction classification by the Kth nearest neighbours rule. Physiol Meas 26 (2005) 123-130
    • (2005) Physiol Meas , vol.26 , pp. 123-130
    • Christov, I.1    Jekova, I.2    Bortolan, G.3
  • 13
    • 0031238509 scopus 로고    scopus 로고
    • A patient-adaptable ECG beat classifier using a mixture of experts approach
    • Hu Y.H., Palreddy S., and Tompkins W.J. A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans Biomed Eng 44 9 (1997) 891-900
    • (1997) IEEE Trans Biomed Eng , vol.44 , Issue.9 , pp. 891-900
    • Hu, Y.H.1    Palreddy, S.2    Tompkins, W.J.3
  • 15
    • 0032031794 scopus 로고    scopus 로고
    • Developments in ECG acquisition, preprocessing, parameter measurement and recording
    • Daskalov I.K., Dotsinsky I.A., and Christov I. Developments in ECG acquisition, preprocessing, parameter measurement and recording. IEEE Eng Med Biol 17 (1998) 50-58
    • (1998) IEEE Eng Med Biol , vol.17 , pp. 50-58
    • Daskalov, I.K.1    Dotsinsky, I.A.2    Christov, I.3
  • 16
    • 0032941256 scopus 로고    scopus 로고
    • Electrocardiogramsignal preprocessing for automatic detection of QRS boundaries
    • Daskalov I.K., and Christov I. Electrocardiogramsignal preprocessing for automatic detection of QRS boundaries. Med Eng Phys 21 1 (1999) 37-44
    • (1999) Med Eng Phys , vol.21 , Issue.1 , pp. 37-44
    • Daskalov, I.K.1    Christov, I.2
  • 19
    • 0026205073 scopus 로고
    • Classification of electrocardiographic signals: a fuzzy pattern matching approach
    • Pedrycz W., Bortolan G., and Degani R. Classification of electrocardiographic signals: a fuzzy pattern matching approach. Artif Intell Med 3 (1991) 31-46
    • (1991) Artif Intell Med , vol.3 , pp. 31-46
    • Pedrycz, W.1    Bortolan, G.2    Degani, R.3
  • 20
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference systems
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23 3 (1993) 665-685
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 21
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S. Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2 3 (1994) 267-268
    • (1994) J Intell Fuzzy Syst , vol.2 , Issue.3 , pp. 267-268
    • Chiu, S.1
  • 24
    • 0026848861 scopus 로고
    • Neural-network-based adaptive matched filtering for QRS detection
    • Xue Q., Hu Y.H., and Tompkins W.J. Neural-network-based adaptive matched filtering for QRS detection. IEEE Trans Biomed Eng 39 (1992) 317-329
    • (1992) IEEE Trans Biomed Eng , vol.39 , pp. 317-329
    • Xue, Q.1    Hu, Y.H.2    Tompkins, W.J.3
  • 25
    • 0028532661 scopus 로고
    • Artificial neural networks for the diagnosis of atrial fibrillation
    • Yang T.F., Devine B., and Macfarlane P.W. Artificial neural networks for the diagnosis of atrial fibrillation. Med Biol Eng Comput 32 (1994) 615-619
    • (1994) Med Biol Eng Comput , vol.32 , pp. 615-619
    • Yang, T.F.1    Devine, B.2    Macfarlane, P.W.3
  • 26
    • 0001201297 scopus 로고    scopus 로고
    • Design of hybrid architectures based on neural classifier and RBF pre-processing for ECG analysis. I
    • Silipo R., Bortolan G., and Marchesi C. Design of hybrid architectures based on neural classifier and RBF pre-processing for ECG analysis. I. J Approx Reason 21 (1999) 177-196
    • (1999) J Approx Reason , vol.21 , pp. 177-196
    • Silipo, R.1    Bortolan, G.2    Marchesi, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.