메뉴 건너뛰기




Volumn 38, Issue 4, 2014, Pages

Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders

Author keywords

Artificial neural network (ANN); Electromyography (EMG); K Nearest neighbor (k NN); Motor unit action potentials (MUAPs); Multiple signal classification (MUSIC); Multiscale principle component analysis (MSPCA); Support vectormachine (SVM)

Indexed keywords

ACCURACY; ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; CLINICAL ARTICLE; CONTROLLED STUDY; ELECTROMYOGRAPHY; ELECTROPHYSIOLOGICAL PROCEDURES; EXTRACTION; FEMALE; HUMAN; K NEAREST NEIGHBOR; MALE; MULTISCALE PRINCIPAL COMPONENT ANALYSIS; NEUROMUSCULAR DISEASE; PRINCIPAL COMPONENT ANALYSIS; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; SIGNAL DETECTION; SUPPORT VECTOR MACHINE; ALGORITHM; MIDDLE AGED; NEUROMUSCULAR DISEASES; PROCEDURES; SIGNAL PROCESSING;

EID: 84897244459     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-014-0031-3     Document Type: Article
Times cited : (90)

References (52)
  • 1
    • 0036086917 scopus 로고    scopus 로고
    • Optimal resolution of superimposed action potentials
    • DOI 10.1109/TBME.2002.1010847, PII S0018929402057713
    • McGill, K. C., Optimal resolution of superimposed action potentials. IEEE Trans. Biomed. Eng. 49(7):640-650, 2002. (Pubitemid 34651457)
    • (2002) IEEE Transactions on Biomedical Engineering , vol.49 , Issue.7 , pp. 640-650
    • McGill, K.C.1
  • 3
    • 33646100549 scopus 로고    scopus 로고
    • A novel method for automated EMG decomposition and MUAP classification
    • Katsis, C. D., Goletis, Y., Likas, A., Fodiatis, D. I., and Sarmas, I., A novel method for automated EMG decomposition and MUAP classification. Artif. Intell. Med. 37(1):55-64, 2006.
    • (2006) Artif. Intell. Med. , vol.37 , Issue.1 , pp. 55-64
    • Katsis, C.D.1    Goletis, Y.2    Likas, A.3    Fodiatis, D.I.4    Sarmas, I.5
  • 4
  • 5
    • 0032711174 scopus 로고    scopus 로고
    • Time-scale analysis of motor unit action potentials
    • DOI 10.1109/10.797992, PII S0018929499076417
    • Pattichis, C. S., and Pattichis, M. S., Time-scale analysis of motor unit action potentials. IEEE Trans. Biomed. Eng. 46(11):1320-1329, 1999. (Pubitemid 29501549)
    • (1999) IEEE Transactions on Biomedical Engineering , vol.46 , Issue.11 , pp. 1320-1329
    • Pattichis, C.S.1    Pattichis, M.S.2
  • 7
    • 23944435015 scopus 로고    scopus 로고
    • Application of classical and model-based spectral methods to describe the state of alertness in EEG
    • DOI 10.1007/s10916-005-6104-6
    • Subasi, A., Application of classical and model-based spectral methods to describe the state of alertness in EEG. J. Med. Syst. 29(5):473-486, 2005. (Pubitemid 41203626)
    • (2005) Journal of Medical Systems , vol.29 , Issue.5 , pp. 473-486
    • Subasi, A.1
  • 8
    • 77956056202 scopus 로고    scopus 로고
    • Muscle Fatigue detection in EMG using time-frequency methods, ICA and neural networks
    • Subasi, A., and Kiymik, M. K., Muscle Fatigue detection in EMG using time-frequency methods, ICA and neural networks. J. Med. Syst. 34(4):777-785, 2010.
    • (2010) J. Med. Syst. , vol.34 , Issue.4 , pp. 777-785
    • Subasi, A.1    Kiymik, M.K.2
  • 10
    • 21644434168 scopus 로고    scopus 로고
    • Use of support vector machines and neural network in diagnosis of neuromuscular disorders
    • DOI 10.1007/s10916-005-5187-4
    • Güler, N. F., and Koçer, S., Use of support vector machines and neural network in diagnosis of neuromuscular disorders. J. Med. Syst. 29(3):271-284, 2005. (Pubitemid 40931930)
    • (2005) Journal of Medical Systems , vol.29 , Issue.3 , pp. 271-284
    • Guler, N.F.1    Kocer, S.2
  • 11
    • 84863202436 scopus 로고    scopus 로고
    • Analysis of repetitive flash stimulation frequencies and record periods to detect migraine using artificial neural network
    • Akben, S. B., Subasi, A., and Tuncel, D., Analysis of repetitive flash stimulation frequencies and record periods to detect migraine using artificial neural network. J. Med. Syst. 36(2):925-931, 2012.
    • (2012) J. Med. Syst. , vol.36 , Issue.2 , pp. 925-931
    • Akben, S.B.1    Subasi, A.2    Tuncel, D.3
  • 12
    • 77954080796 scopus 로고    scopus 로고
    • Classification of Emg signals using neuro-fuzzy system and diagnosis of neuromuscular diseases
    • Koçer, S., Classification of Emg signals using neuro-fuzzy system and diagnosis of neuromuscular diseases. J. Med. Syst. 34(3):321-329, 2010.
    • (2010) J. Med. Syst. , vol.34 , Issue.3 , pp. 321-329
    • Koçer, S.1
  • 13
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based attribute selection and parameter optimization for support vector machine
    • Huang, C. L., and Wang, C. J., A GA-based attribute selection and parameter optimization for support vector machine. Expert Syst. Appl. 31(2):231-240, 2006.
    • (2006) Expert Syst. Appl. , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 14
    • 11844263947 scopus 로고    scopus 로고
    • Intelligent evolutionary algorithms for large parameter optimization problems
    • Ho, S. Y., Shu, L. S., and Chen, J. H., Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Trans. Evolut. 8(6):522-541, 2004.
    • (2004) IEEE Trans. Evolut. , vol.8 , Issue.6 , pp. 522-541
    • Ho, S.Y.1    Shu, L.S.2    Chen, J.H.3
  • 15
    • 33645224070 scopus 로고    scopus 로고
    • Techniques of EMG signal analysis: Detection, processing, classification and applications
    • Reaz, M. B. I., Hussain, M. S., and Mohd-Yasin, F., Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online 8:11-35, 2006.
    • (2006) Biol. Proced. Online , vol.8 , pp. 11-35
    • Reaz, M.B.I.1    Hussain, M.S.2    Mohd-Yasin, F.3
  • 16
    • 84861850248 scopus 로고    scopus 로고
    • Classification of EMG signals using combined features and soft computing
    • Subasi, A., Classification of EMG signals using combined features and soft computing. Appl. Soft Comput. 12(8):2188-2198, 2012.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.8 , pp. 2188-2198
    • Subasi, A.1
  • 17
    • 84875921509 scopus 로고    scopus 로고
    • Classification of EMG signals using PSO optimized SVM for diagnosis
    • Subasi, A., Classification of EMG signals using PSO optimized SVM for diagnosis. Comput. Biol. Med. 43(5):576-586, 2013.
    • (2013) Comput. Biol. Med. , vol.43 , Issue.5 , pp. 576-586
    • Subasi, A.1
  • 18
    • 33747156423 scopus 로고    scopus 로고
    • Classification of EMG signals using wavelet neural network
    • DOI 10.1016/j.jneumeth.2006.03.004, PII S0165027006001440
    • Subasi, A., Yilmaz, M., and Ozcalik, H. R., Classification of EMG signals using wavelet neural network. J. Neurosci. Methods 156(1-2):360-367, 2006. (Pubitemid 44233682)
    • (2006) Journal of Neuroscience Methods , vol.156 , Issue.1-2 , pp. 360-367
    • Subasi, A.1    Yilmaz, M.2    Ozcalik, H.R.3
  • 20
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to MSPC monitoring
    • Bakshi, B. R., Multiscale PCA with application to MSPC monitoring. AIChE J 44(77):1596-1610, 1998.
    • (1998) AIChE J , vol.44 , Issue.77 , pp. 1596-1610
    • Bakshi, B.R.1
  • 21
    • 70349490443 scopus 로고    scopus 로고
    • A comparative analysis of principal component and independent component techniques for electrocardiograms
    • Chawla, M. P. S., A comparative analysis of principal component and independent component techniques for electrocardiograms. Neural Comput Applic Springer-Verlag London Limited 18(6):539-556, 2009.
    • (2009) Neural Comput Applic Springer-Verlag London Limited , vol.18 , Issue.6 , pp. 539-556
    • Chawla, M.P.S.1
  • 22
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling, H., Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6):417-441, 1933.
    • (1933) J. Educ. Psychol. , vol.24 , Issue.6 , pp. 417-441
    • Hotelling, H.1
  • 24
    • 0000307067 scopus 로고    scopus 로고
    • Multiscale analysis and modeling using wavelets
    • Bakshi, B. R., Multiscale analysis and modeling using wavelets. J. Chemom. 13(3-4):415-434, 1999.
    • (1999) J. Chemom. , vol.13 , Issue.3-4 , pp. 415-434
    • Bakshi, B.R.1
  • 25
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra, M., Yue, H. H., Qin, S. J., and Ling, C., Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 26(9):1281-1293, 2002.
    • (2002) Comput. Chem. Eng. , vol.26 , Issue.9 , pp. 1281-1293
    • Misra, M.1    Yue, H.H.2    Qin, S.J.3    Ling, C.4
  • 26
    • 33847046886 scopus 로고    scopus 로고
    • Application of projection pursuit based robust principal component analysis to ECG enhancement
    • Kotas, M., Application of projection pursuit based robust principal component analysis to ECG enhancement. Biomed Signal Process Control 1(4):289-298, 2006.
    • (2006) Biomed Signal Process Control , vol.1 , Issue.4 , pp. 289-298
    • Kotas, M.1
  • 28
    • 84984520202 scopus 로고
    • The retrieval of harmonics from a covariance function geophysics
    • Pisarenko, V. F., The retrieval of harmonics from a covariance function geophysics. J. R. Astron. Soc. 33(3):347-366, 1973.
    • (1973) J. R. Astron. Soc. , vol.33 , Issue.3 , pp. 347-366
    • Pisarenko, V.F.1
  • 29
    • 0022683359 scopus 로고
    • Multiple emitter location and signal parameter estimation
    • Schmidt, R. O., Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag 34(3):276-280, 1986.
    • (1986) IEEE Trans. Antennas Propag , vol.34 , Issue.3 , pp. 276-280
    • Schmidt, R.O.1
  • 30
    • 0020833661 scopus 로고
    • OPTIMALITY OF HIGH RESOLUTION ARRAY PROCESSING USING THE EIGENSYSTEM APPROACH.
    • Bienvenu, G., and Kopp, L., Optimality of high resolution array processing using the eigensystem approach. IEEE Trans Acoust Speech Signal Process 31(5):1235-1248, 1983. (Pubitemid 14490804)
    • (1983) IEEE Transactions on Acoustics, Speech, and Signal Processing , vol.ASSP-31 , Issue.5 , pp. 1235-1248
    • Bienvenu, G.1    Kopp, L.2
  • 34
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65:386-408, 1958.
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 35
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • DOI 10.1016/j.cmpb.2004.10.009
    • Subasi, A., and Erçelebi, E., Classification of EEG signals using neural network and logistic regression. Comput. Methods Prog. Biomed. 78(2):87-99, 2005. (Pubitemid 40575687)
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 39
    • 84863873571 scopus 로고    scopus 로고
    • Multiresolution MUAPs decomposition and SVM-based analysis in the classification of neuromuscular disorders
    • Dobrowolski, A. P., Wierzbowski, M., and Tomczykiewicz, K., Multiresolution MUAPs decomposition and SVM-based analysis in the classification of neuromuscular disorders. Comput. Methods Prog. Biomed. 107(3):393-403, 2011.
    • (2011) Comput. Methods Prog. Biomed. , vol.107 , Issue.3 , pp. 393-403
    • Dobrowolski, A.P.1    Wierzbowski, M.2    Tomczykiewicz, K.3
  • 41
    • 74949088520 scopus 로고    scopus 로고
    • A survey of collaborative recommendation and the robustness of model-based algorithms
    • Sandvig, J. J., Mobasher, B., and Burke, R., A survey of collaborative recommendation and the robustness of model-based algorithms. IEEE Computer Soc. Technical Committee Data Eng. 31(2):3-13, 2008.
    • (2008) IEEE Computer Soc. Technical Committee Data Eng. , vol.31 , Issue.2 , pp. 3-13
    • Sandvig, J.J.1    Mobasher, B.2    Burke, R.3
  • 42
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
    • Zweig, M. H., and Campbell, G., Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinicalmedicine. Clin. Chem. 39(8):561-577, 1993. (Pubitemid 23118304)
    • (1993) Clinical Chemistry , vol.39 , Issue.4 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2
  • 45
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J. A., and McNeil, B. J., The meaning and use of the area under a receiver operating characteristic(ROC). Radiology 143:29-36, 1982. (Pubitemid 12142173)
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 46
    • 0141518516 scopus 로고    scopus 로고
    • Receiver operating characteristic curves and their use in radiology
    • DOI 10.1148/radiol.2291010898
    • Obuchowski, N. A., Receiver operating characteristic curves and their use in radiology. Radiology 229:3-8, 2003. (Pubitemid 37152094)
    • (2003) Radiology , vol.229 , Issue.1 , pp. 3-8
    • Obuchowski, N.A.1
  • 47
    • 0018390029 scopus 로고
    • ROC analysis applied to the evaluation of medical imaging techniques
    • DOI 10.1097/00004424-197903000-00002
    • Swets, J. A., ROC analysis applied to the evaluation of medical imaging techniques. Investig. Radiol. 14:109-121, 1979. (Pubitemid 9182004)
    • (1979) Investigative Radiology , vol.14 , Issue.2 , pp. 109-121
    • Swets, J.A.1
  • 48
    • 44349169028 scopus 로고    scopus 로고
    • Motor unit potential characterization using pattern discovery
    • DOI 10.1016/j.medengphy.2007.06.005, PII S1350453307001300
    • Pino, L. J., Stashuk, D. W., Boe, S. G., and Doherty, T. J., Motor unit potential characterization using pattern discovery. Med. Eng. Phys. 30(5):563-573, 2008. (Pubitemid 351749847)
    • (2008) Medical Engineering and Physics , vol.30 , Issue.5 , pp. 563-573
    • Pino, L.J.1    Stashuk, D.W.2    Boe, S.G.3    Doherty, T.J.4
  • 49
    • 42249101059 scopus 로고    scopus 로고
    • The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification
    • Yan, Z., Wang, Z., and Xie, H., The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification. Comput. Methods Prog. Biomed. 90(3):275-284, 2008.
    • (2008) Comput. Methods Prog. Biomed. , vol.90 , Issue.3 , pp. 275-284
    • Yan, Z.1    Wang, Z.2    Xie, H.3
  • 50
    • 70350710015 scopus 로고    scopus 로고
    • Relationship between grasping force and features of sgnle channel intramuscular EMG signals
    • Kamayuako, E. N., Farina, D., Yoshida, K., and Jensen, W., Relationship between grasping force and features of sgnle channel intramuscular EMG signals. J. Neurosci. Methods 185(1):143-150, 2009.
    • (2009) J. Neurosci. Methods , vol.185 , Issue.1 , pp. 143-150
    • Kamayuako, E.N.1    Farina, D.2    Yoshida, K.3    Jensen, W.4
  • 52
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalisation performance: Support vector machines
    • DOI 10.1016/S0169-7439(02)00046-1, PII S0169743902000461
    • Belousov, A. I., Verzakov, S. A., and Frese, J., A flexible classification approach with optimal generalisation performance: support vector machines. Chemom. Intell. Lab. Syst. 64(1):15-25, 2002. (Pubitemid 35304556)
    • (2002) Chemometrics and Intelligent Laboratory Systems , vol.64 , Issue.1 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    Von Frese, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.