-
1
-
-
0031015902
-
Nomenclature for sugar-binding subsites in glycosyl hydrolases
-
Davies, G. J., Wilson, K. S., and Henrissat, B. (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321, 557-559
-
(1997)
Biochem. J.
, vol.321
, pp. 557-559
-
-
Davies, G.J.1
Wilson, K.S.2
Henrissat, B.3
-
2
-
-
25444484215
-
Oligosaccharide binding to barley α-amylase 1
-
Robert, X., Haser, R., Mori, H., Svensson, B., and Aghajari, N. (2005) Oligosaccharide binding to barley α-amylase 1. J. Biol. Chem. 280, 32968-32978
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 32968-32978
-
-
Robert, X.1
Haser, R.2
Mori, H.3
Svensson, B.4
Aghajari, N.5
-
3
-
-
75849119359
-
SusG: A unique cell-membrane-associated α-amylase from a prominent human gut symbiont targets complex starch molecules
-
Koropatkin, N. M., and Smith, T. J. (2010) SusG: a unique cell-membrane-associated α-amylase from a prominent human gut symbiont targets complex starch molecules. Structure 18, 200-215
-
(2010)
Structure
, vol.18
, pp. 200-215
-
-
Koropatkin, N.M.1
Smith, T.J.2
-
4
-
-
84861990930
-
Structural elucidation of dextran degradation mechanism by Streptococcus mutans dextranase belonging to glycoside hydrolase family 66
-
Suzuki, N., Kim, Y. M., Fujimoto, Z., Momma, M., Okuyama, M., Mori, H., Funane, K., and Kimura, A. (2012) Structural elucidation of dextran degradation mechanism by Streptococcus mutans dextranase belonging to glycoside hydrolase family 66. J. Biol. Chem. 287, 19916-19926
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 19916-19926
-
-
Suzuki, N.1
Kim, Y.M.2
Fujimoto, Z.3
Momma, M.4
Okuyama, M.5
Mori, H.6
Funane, K.7
Kimura, A.8
-
5
-
-
84875013931
-
X-ray structure and molecular dynamics simulations of endoglucanase 3 from Trichoderma harzianum: Structural organization and substrate recognition by endoglucanases that lack cellulose binding module
-
Prates, É. T, Stankovic, I., Silveira, R. L., Liberato, M. V., Henrique-Silva, F., Pereira, N., Jr., Polikarpov, I., and Skaf, M. S. (2013) X-ray structure and molecular dynamics simulations of endoglucanase 3 from Trichoderma harzianum: structural organization and substrate recognition by endoglucanases that lack cellulose binding module. PLoS One 8, e59069
-
(2013)
PLoS One
, vol.8
, pp. e59069
-
-
Prates, É.T.1
Stankovic, I.2
Silveira, R.L.3
Liberato, M.V.4
Henrique-Silva, F.5
Pereira, N.6
Polikarpov, I.7
Skaf, M.S.8
-
6
-
-
0027338121
-
The 2.0-A˚ resolution structure of soybean β-amylase complexed with alpha-cyclodextrin
-
Mikami, B., Hehre, E. J., Sato, M., Katsube, Y., Hirose, M., Morita, Y., and Sacchettini, J. C. (1993) The 2.0-A˚ resolution structure of soybean β-amylase complexed with alpha-cyclodextrin. Biochemistry 32, 6836-6845
-
(1993)
Biochemistry
, vol.32
, pp. 6836-6845
-
-
Mikami, B.1
Hehre, E.J.2
Sato, M.3
Katsube, Y.4
Hirose, M.5
Morita, Y.6
Sacchettini, J.C.7
-
7
-
-
0025182502
-
Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei
-
Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J. K., and Jones, T. A. (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249, 380-386
-
(1990)
Science
, vol.249
, pp. 380-386
-
-
Rouvinen, J.1
Bergfors, T.2
Teeri, T.3
Knowles, J.K.4
Jones, T.A.5
-
8
-
-
84860327780
-
Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, from Coprinopsis cinerea: A tweezer-like motion in the structure of CcCel6C
-
Tamura, M., Miyazaki, T., Tanaka, Y., Yoshida, M., Nishikawa, A., and Tonozuka, T. (2012) Comparison of the structural changes in two cellobiohydrolases, CcCel6A and CcCel6C, from Coprinopsis cinerea: a tweezer-like motion in the structure of CcCel6C. FEBS J. 279, 1871-1882
-
(2012)
FEBS J.
, vol.279
, pp. 1871-1882
-
-
Tamura, M.1
Miyazaki, T.2
Tanaka, Y.3
Yoshida, M.4
Nishikawa, A.5
Tonozuka, T.6
-
9
-
-
33745048293
-
Structure of the Sulfolobus solfataricus α-glucosidase: Implications for domain conservation and substrate recognition in GH31
-
Ernst, H. A., Lo Leggio, L., Willemoës, M., Leonard, G., Blum, P., and Larsen, S. (2006) Structure of the Sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. J. Mol. Biol. 358, 1106-1124
-
(2006)
J. Mol. Biol.
, vol.358
, pp. 1106-1124
-
-
Ernst, H.A.1
Lo Leggio, L.2
Willemoës, M.3
Leonard, G.4
Blum, P.5
Larsen, S.6
-
10
-
-
37449009082
-
Human intestinal maltase-glucoamylase: Crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity
-
Sim, L., Quezada-Calvillo, R., Sterchi, E. E., Nichols, B. L., and Rose, D. R. (2008) Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 375, 782-792
-
(2008)
J. Mol. Biol.
, vol.375
, pp. 782-792
-
-
Sim, L.1
Quezada-Calvillo, R.2
Sterchi, E.E.3
Nichols, B.L.4
Rose, D.R.5
-
11
-
-
84891763855
-
The Carbohydrate-active enzymes database (CAZy) in 2013
-
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490-D495
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D490-D495
-
-
Lombard, V.1
Golaconda Ramulu, H.2
Drula, E.3
Coutinho, P.M.4
Henrissat, B.5
-
12
-
-
0013686521
-
Substrate specificity and subsite affinities of buckwheat α-glucosidase
-
Chiba, S., Kanaya, K., Hiromi, K., and Shimomura, T. (1979) Substrate specificity and subsite affinities of buckwheat α-glucosidase. Agric. Biol. Chem. 43, 237-242
-
(1979)
Agric. Biol. Chem.
, vol.43
, pp. 237-242
-
-
Chiba, S.1
Kanaya, K.2
Hiromi, K.3
Shimomura, T.4
-
13
-
-
0028890556
-
Multiple molecular forms of α-glucosidase from spinach seeds
-
Sugimoto, M., Furui, S., and Suzuki, Y. (1995) Multiple molecular forms of α-glucosidase from spinach seeds, Spinacia oleracea L. Biosci. Biotechnol. Biochem. 59, 673-677
-
(1995)
Spinacia Oleracea L. Biosci. Biotechnol. Biochem.
, vol.59
, pp. 673-677
-
-
Sugimoto, M.1
Furui, S.2
Suzuki, Y.3
-
14
-
-
33845602014
-
Multiple forms of α-glucosidase in rice seeds (Oryza sativa L., var Nipponbare)
-
Nakai, H., Ito, T., Hayashi, M., Kamiya, K., Yamamoto, T., Matsubara, K., Kim, Y. M., Jintanart, W., Okuyama, M., Mori, H., Chiba, S., Sano, Y., and Kimura, A. (2007) Multiple forms of α-glucosidase in rice seeds (Oryza sativa L., var Nipponbare). Biochimie 89, 49-62
-
(2007)
Biochimie
, vol.89
, pp. 49-62
-
-
Nakai, H.1
Ito, T.2
Hayashi, M.3
Kamiya, K.4
Yamamoto, T.5
Matsubara, K.6
Kim, Y.M.7
Jintanart, W.8
Okuyama, M.9
Mori, H.10
Chiba, S.11
Sano, Y.12
Kimura, A.13
-
15
-
-
0007553835
-
Substrate specificity of an α-glucosidase in sugar beet seed
-
Matsui, H., Chiba, S., and Shimomura, T. (1978) Substrate specificity of an α-glucosidase in sugar beet seed. Agric. Biol. Chem. 42, 1855-1860
-
(1978)
Agric. Biol. Chem.
, vol.42
, pp. 1855-1860
-
-
Matsui, H.1
Chiba, S.2
Shimomura, T.3
-
16
-
-
84879595690
-
Molecular basis for the recognition of long-chain substrates by plant α-glucosidase
-
Tagami, T., Yamashita, K., Okuyama, M., Mori, H., Yao, M., and Kimura, A. (2013) Molecular basis for the recognition of long-chain substrates by plant α-glucosidase. J. Biol. Chem. 288, 19296-19303
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 19296-19303
-
-
Tagami, T.1
Yamashita, K.2
Okuyama, M.3
Mori, H.4
Yao, M.5
Kimura, A.6
-
17
-
-
77952939601
-
Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains
-
Sim, L., Willemsma, C., Mohan, S., Naim, H. Y., Pinto, B. M., and Rose, D. R. (2010) Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J. Biol. Chem. 285, 17763-17770
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 17763-17770
-
-
Sim, L.1
Willemsma, C.2
Mohan, S.3
Naim, H.Y.4
Pinto, B.M.5
Rose, D.R.6
-
18
-
-
77957840981
-
Novel α-glucosidase from human gut microbiome: Substrate specificities and their switch
-
Tan, K., Tesar, C., Wilton, R., Keigher, L., Babnigg, G., and Joachimiak, A. (2010) Novel α-glucosidase from human gut microbiome: substrate specificities and their switch. FASEB J. 24, 3939-3949
-
(2010)
FASEB J.
, vol.24
, pp. 3939-3949
-
-
Tan, K.1
Tesar, C.2
Wilton, R.3
Keigher, L.4
Babnigg, G.5
Joachimiak, A.6
-
19
-
-
80955157951
-
Structural insight into substrate specificity of human intestinal maltase-glucoamylase
-
Ren, L., Qin, X., Cao, X., Wang, L., Bai, F., Bai, G., and Shen, Y. (2011) Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2, 827-836
-
(2011)
Protein Cell
, vol.2
, pp. 827-836
-
-
Ren, L.1
Qin, X.2
Cao, X.3
Wang, L.4
Bai, F.5
Bai, G.6
Shen, Y.7
-
20
-
-
84871716252
-
Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidase contribute to recognition of long-chain substrates
-
Tagami, T., Okuyama, M., Nakai, H., Kim, Y. M., Mori, H., Taguchi, K., Svensson, B., and Kimura, A. (2013) Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidase contribute to recognition of long-chain substrates. Biochim. Biophys. Acta 1834, 329-335
-
(2013)
Biochim. Biophys. Acta
, vol.1834
, pp. 329-335
-
-
Tagami, T.1
Okuyama, M.2
Nakai, H.3
Kim, Y.M.4
Mori, H.5
Taguchi, K.6
Svensson, B.7
Kimura, A.8
-
21
-
-
84875466453
-
Enzymatic synthesis of acarviosyl-maltooligosaccharides using disproportionating enzyme 1
-
Tagami, T., Tanaka, Y., Mori, H., Okuyama, M., and Kimura, A. (2013) Enzymatic synthesis of acarviosyl-maltooligosaccharides using disproportionating enzyme 1. Biosci. Biotechnol. Biochem. 77, 312-319
-
(2013)
Biosci. Biotechnol. Biochem.
, vol.77
, pp. 312-319
-
-
Tagami, T.1
Tanaka, Y.2
Mori, H.3
Okuyama, M.4
Kimura, A.5
-
22
-
-
0000765113
-
A rapid Smith-degradation for the determination of non-reducing, terminal residues of (1→4)α-D-glucans
-
Hizukuri, S., and Osaki, S. (1978) A rapid Smith-degradation for the determination of non-reducing, terminal residues of (1→4)α-D-glucans. Carbohydr. Res. 63, 261-264
-
(1978)
Carbohydr. Res.
, vol.63
, pp. 261-264
-
-
Hizukuri, S.1
Osaki, S.2
-
24
-
-
76449098262
-
PHENIX: A comprehensive Python-based system for macromolecular structure solution
-
Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221
-
(2010)
Acta Crystallogr. D Biol. Crystallogr.
, vol.66
, pp. 213-221
-
-
Adams, P.D.1
Afonine, P.V.2
Bunkóczi, G.3
Chen, V.B.4
Davis, I.W.5
Echols, N.6
Headd, J.J.7
Hung, L.W.8
Kapral, G.J.9
Grosse-Kunstleve, R.W.10
McCoy, A.J.11
Moriarty, N.W.12
Oeffner, R.13
Read, R.J.14
Richardson, D.C.15
Richardson, J.S.16
Terwilliger, T.C.17
Zwart, P.H.18
-
25
-
-
34447508216
-
Phaser crystallographic software
-
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674
-
(2007)
J. Appl. Crystallogr.
, vol.40
, pp. 658-674
-
-
McCoy, A.J.1
Grosse-Kunstleve, R.W.2
Adams, P.D.3
Winn, M.D.4
Storoni, L.C.5
Read, R.J.6
-
26
-
-
84860273177
-
Towards automated crystallographic structure refinement with phenix.Refine
-
Afonine, P. V., Grosse-Kunstleve, R.W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H., and Adams, P. D. (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352-367
-
(2012)
Acta Crystallogr. D Biol. Crystallogr.
, vol.68
, pp. 352-367
-
-
Afonine, P.V.1
Grosse-Kunstleve, R.W.2
Echols, N.3
Headd, J.J.4
Moriarty, N.W.5
Mustyakimov, M.6
Terwilliger, T.C.7
Urzhumtsev, A.8
Zwart, P.H.9
Adams, P.D.10
-
27
-
-
77949535720
-
Features and development of Coot
-
Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501
-
(2010)
Acta Crystallogr. D Biol. Crystallogr.
, vol.66
, pp. 486-501
-
-
Emsley, P.1
Lohkamp, B.2
Scott, W.G.3
Cowtan, K.4
-
28
-
-
79953763877
-
REFMAC5 for the refinement of macromolecular crystal structures
-
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., and Vagin, A. A. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355-367
-
(2011)
Acta Crystallogr. D Biol. Crystallogr.
, vol.67
, pp. 355-367
-
-
Murshudov, G.N.1
Skubák, P.2
Lebedev, A.A.3
Pannu, N.S.4
Steiner, R.A.5
Nicholls, R.A.6
Winn, M.D.7
Long, F.8
Vagin, A.A.9
-
29
-
-
0000468730
-
Binding energy and catalysis: The implications for transition-state analogs and catalytic antibodies
-
Mader, M. M., and Bartlett, P. A. (1997) Binding energy and catalysis: the implications for transition-state analogs and catalytic antibodies. Chem. Rev. 97, 1281-1302
-
(1997)
Chem. Rev.
, vol.97
, pp. 1281-1302
-
-
Mader, M.M.1
Bartlett, P.A.2
-
30
-
-
66549119395
-
Advances and pitfalls of protein structural alignment
-
Hasegawa, H., and Holm, L. (2009) Advances and pitfalls of protein structural alignment. Curr. Opin. Struct. Biol. 19, 341-348
-
(2009)
Curr. Opin. Struct. Biol.
, vol.19
, pp. 341-348
-
-
Hasegawa, H.1
Holm, L.2
-
31
-
-
0032497955
-
Reassessment of acarbose as a transition state analogue inhibitor of cyclodextrin glycosyltransferase
-
Mosi, R., Sham, H., Uitdehaag, J. C., Ruiterkamp, R., Dijkstra, B. W., and Withers, S. G. (1998) Reassessment of acarbose as a transition state analogue inhibitor of cyclodextrin glycosyltransferase. Biochemistry 37, 17192-17198
-
(1998)
Biochemistry
, vol.37
, pp. 17192-17198
-
-
Mosi, R.1
Sham, H.2
Uitdehaag, J.C.3
Ruiterkamp, R.4
Dijkstra, B.W.5
Withers, S.G.6
-
32
-
-
0028918401
-
A proficient enzyme
-
Radzicka, A., and Wolfenden, R. (1995) A proficient enzyme. Science 267, 90-93
-
(1995)
Science
, vol.267
, pp. 90-93
-
-
Radzicka, A.1
Wolfenden, R.2
-
33
-
-
0033551160
-
V-amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose)
-
Gessler, K., Usón, I., Takaha, T., Krauss, N., Smith, S. M., Okada, S., Sheldrick, G. M., and Saenger, W. (1999) V-amylose at atomic resolution: x-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. U.S.A. 96, 4246-4251
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 4246-4251
-
-
Gessler, K.1
Usón, I.2
Takaha, T.3
Krauss, N.4
Smith, S.M.5
Okada, S.6
Sheldrick, G.M.7
Saenger, W.8
-
34
-
-
0343819898
-
Band-flip and kink as novel structural motifs in α-(1→4)-D-glucose oligosaccharides. Crystal structures of cy-clodeca- and cyclotetradecaamylose
-
Jacob, J., Geßler, K., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M., Takaha, T., and Saenger, W. (1999) Band-flip and kink as novel structural motifs in α-(1→4)-D-glucose oligosaccharides. Crystal structures of cy-clodeca- and cyclotetradecaamylose. Carbohydr. Res. 322, 228-246
-
(1999)
Carbohydr. Res.
, vol.322
, pp. 228-246
-
-
Jacob, J.1
Geßler, K.2
Hoffmann, D.3
Sanbe, H.4
Koizumi, K.5
Smith, S.M.6
Takaha, T.7
Saenger, W.8
-
35
-
-
0034731427
-
Glucoamylase: Structure/function relationships, and protein engineering
-
Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., Roepstorff, P., and Svensson, B. (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim. Biophys. Acta 1543, 275-293
-
(2000)
Biochim. Biophys. Acta
, vol.1543
, pp. 275-293
-
-
Sauer, J.1
Sigurskjold, B.W.2
Christensen, U.3
Frandsen, T.P.4
Mirgorodskaya, E.5
Harrison, M.6
Roepstorff, P.7
Svensson, B.8
-
36
-
-
3042666256
-
MUSCLE: Multiple sequence alignment with high accuracy and high throughput
-
Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 1792-1797
-
-
Edgar, R.C.1
|