메뉴 건너뛰기




Volumn 288, Issue 26, 2013, Pages 19296-19303

Molecular basis for the recognition of long-chain substrates by plant α-glucosidases

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE SITE POCKET; AMINO ACID SEQUENCE; GLYCOSIDE HYDROLASE FAMILY 31; MALTOOLIGOSACCHARIDES; N-TERMINAL DOMAINS; SITE DIRECTED MUTAGENESIS; STRUCTURAL INSIGHTS; SUBSTRATE RECOGNITION;

EID: 84879595690     PISSN: 00219258     EISSN: 1083351X     Source Type: Journal    
DOI: 10.1074/jbc.M113.465211     Document Type: Article
Times cited : (97)

References (34)
  • 3
    • 84954871548 scopus 로고
    • Substrate specificity and subsite affinities of crystalline α-glucosidase from Aspergillus niger
    • Kita, A., Matsui, H., Somoto, A., Kimura, A., Takata, M., and Chiba, S. (1991) Substrate specificity and subsite affinities of crystalline α-glucosidase from Aspergillus niger. Agric. Biol. Chem. 55, 2327-2335
    • (1991) Agric. Biol. Chem. , vol.55 , pp. 2327-2335
    • Kita, A.1    Matsui, H.2    Somoto, A.3    Kimura, A.4    Takata, M.5    Chiba, S.6
  • 4
    • 23744447380 scopus 로고    scopus 로고
    • Purification and characterization of the hyper-glycosylated extracellular α-glucosidase from Schizosaccharomyces pombe
    • DOI 10.1016/j.enzmictec.2004.06.018, PII S0141022905001286
    • Okuyama, M., Tanimoto, Y., Ito, T., Anzai, A., Mori, H., Kimura, A., Matsui, H., and Chiba, S. (2005) Purification and characterization of the hyperglycosylated extracellular α-glucosidase from Schizosaccharomyces pombe. Enzyme Microb. Technol. 37, 472-480 (Pubitemid 41138177)
    • (2005) Enzyme and Microbial Technology , vol.37 , Issue.5 , pp. 472-480
    • Okuyama, M.1    Tanimoto, Y.2    Ito, T.3    Anzai, A.4    Mori, H.5    Kimura, A.6    Matsui, H.7    Chiba, S.8
  • 5
    • 27644512261 scopus 로고    scopus 로고
    • Glucoamylase originating from Schwanniomyces occidentalis is a typical α-glucosidase
    • DOI 10.1271/bbb.69.1905
    • Sato, F., Okuyama, M., Nakai, H., Mori, H., Kimura, A., and Chiba, S. (2005) Glucoamylase originating from Schwanniomyces occidentalis is a typical α-glucosidase. Biosci. Biotechnol. Biochem. 69, 1905-1913 (Pubitemid 41558855)
    • (2005) Bioscience, Biotechnology and Biochemistry , vol.69 , Issue.10 , pp. 1905-1913
    • Sato, F.1    Okuyama, M.2    Nakai, H.3    Mori, H.4    Kimura, A.5    Chiba, S.6
  • 6
    • 0028886770 scopus 로고
    • Characterization of high pI α-glucosidase from germinated barley seeds: Substrate specificity, subsite affinities and active-site residues
    • Im, H., and Henson, C. A. (1995) Characterization of high pI α-glucosidase from germinated barley seeds: substrate specificity, subsite affinities and active-site residues. Carbohydr. Res. 277, 145-159
    • (1995) Carbohydr. Res. , vol.277 , pp. 145-159
    • Im, H.1    Henson, C.A.2
  • 7
    • 0013686521 scopus 로고
    • Substrate specificity and subsite affinities of buckwheat α-glucosidase
    • Chiba, S., Kanaya, K., Hiromi, K., and Shimomura, T. (1979) Substrate specificity and subsite affinities of buckwheat α-glucosidase. Agric. Biol. Chem. 43, 237-242
    • (1979) Agric. Biol. Chem. , vol.43 , pp. 237-242
    • Chiba, S.1    Kanaya, K.2    Hiromi, K.3    Shimomura, T.4
  • 8
    • 0007553835 scopus 로고
    • Substrate specificity of an α-glucosidase in sugar beet seed
    • Matsui, H., Chiba, S., and Shimomura, T. (1978) Substrate specificity of an α-glucosidase in sugar beet seed. Agric. Biol. Chem. 42, 1855-1860
    • (1978) Agric. Biol. Chem. , vol.42 , pp. 1855-1860
    • Matsui, H.1    Chiba, S.2    Shimomura, T.3
  • 9
    • 33745048293 scopus 로고    scopus 로고
    • Structure of the Sulfolobus solfataricus α-Glucosidase: Implications for Domain Conservation and Substrate Recognition in GH31
    • DOI 10.1016/j.jmb.2006.02.056, PII S0022283606002555
    • Ernst, H. A., Lo Leggio, L., Willemoës, M., Leonard, G., Blum, P., and Larsen, S. (2006) Structure of the Sulfolobus solfataricus α-glucosidase: implications for domain conservation and substrate recognition in GH31. J. Mol. Biol. 358, 1106-1124 (Pubitemid 44403821)
    • (2006) Journal of Molecular Biology , vol.358 , Issue.4 , pp. 1106-1124
    • Ernst, H.A.1    Lo, L.L.2    Willemoes, M.3    Leonard, G.4    Blum, P.5    Larsen, S.6
  • 10
    • 37449009082 scopus 로고    scopus 로고
    • Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity
    • Sim, L., Quezada-Calvillo, R., Sterchi, E. E., Nichols, B. L., and Rose, D. R. (2008) Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 375, 782-792
    • (2008) J. Mol. Biol. , vol.375 , pp. 782-792
    • Sim, L.1    Quezada-Calvillo, R.2    Sterchi, E.E.3    Nichols, B.L.4    Rose, D.R.5
  • 11
    • 77952939601 scopus 로고    scopus 로고
    • Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains
    • Sim, L., Willemsma, C., Mohan, S., Naim, H. Y., Pinto, B. M., and Rose, D. R. (2010) Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J. Biol. Chem. 285, 17763-17770
    • (2010) J. Biol. Chem. , vol.285 , pp. 17763-17770
    • Sim, L.1    Willemsma, C.2    Mohan, S.3    Naim, H.Y.4    Pinto, B.M.5    Rose, D.R.6
  • 12
    • 77957840981 scopus 로고    scopus 로고
    • Novel α-glucosidase from human gut microbiome: Substrate specificities and their switch
    • Tan, K., Tesar, C., Wilton, R., Keigher, L., Babnigg, G., and Joachimiak, A. (2010) Novel α-glucosidase from human gut microbiome: substrate specificities and their switch. FASEB J. 24, 3939-3949
    • (2010) FASEB J. , vol.24 , pp. 3939-3949
    • Tan, K.1    Tesar, C.2    Wilton, R.3    Keigher, L.4    Babnigg, G.5    Joachimiak, A.6
  • 13
    • 80955157951 scopus 로고    scopus 로고
    • Structural insight into substrate specificity of human intestinal maltase-glucoamylase
    • Ren, L., Qin, X., Cao, X., Wang, L., Bai, F., Bai, G., and Shen, Y. (2011) Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2, 827-836
    • (2011) Protein Cell , vol.2 , pp. 827-836
    • Ren, L.1    Qin, X.2    Cao, X.3    Wang, L.4    Bai, F.5    Bai, G.6    Shen, Y.7
  • 14
    • 84871716252 scopus 로고    scopus 로고
    • Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidases contribute to recognition of long-chain substrates
    • Tagami, T., Okuyama, M., Nakai, H., Kim, Y.M., Mori, H., Taguchi, K., Svensson, B., and Kimura, A. (2013) Key aromatic residues at subsites +2 and +3 of glycoside hydrolase family 31 α-glucosidases contribute to recognition of long-chain substrates. Biochim. Biophys. Acta 1834, 329-335
    • (2013) Biochim. Biophys. Acta , vol.1834 , pp. 329-335
    • Tagami, T.1    Okuyama, M.2    Nakai, H.3    Kim, Y.M.4    Mori, H.5    Taguchi, K.6    Svensson, B.7    Kimura, A.8
  • 15
    • 0035189310 scopus 로고    scopus 로고
    • Spidey: A tool for mRNA-to-genomic alignments
    • Wheelan, S. J., Church, D. M., and Ostell, J. M. (2001) Spidey: A tool for mRNA-to genomic alignments. Genome Res. 11, 1952-1957 (Pubitemid 33100436)
    • (2001) Genome Research , vol.11 , Issue.11 , pp. 1952-1957
    • Wheelan, S.J.1    Church, D.M.2    Ostell, J.M.3
  • 22
    • 0000765113 scopus 로고
    • A rapid Smith-degradation for the determination of nonreducing, terminal residues of (1→4)α-D-glucans
    • Hizukuri, S., and Osaki, S. (1978) A rapid Smith-degradation for the determination of nonreducing, terminal residues of (1→4)α-D-glucans. Carbohydr. Res. 63, 261-264
    • (1978) Carbohydr. Res. , vol.63 , pp. 261-264
    • Hizukuri, S.1    Osaki, S.2
  • 23
    • 66549119395 scopus 로고    scopus 로고
    • Advances and pitfalls of protein structural alignment
    • Hasegawa, H., and Holm, L. (2009) Advances and pitfalls of protein structural alignment. Curr. Opin. Struct. Biol. 19, 341-348
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 341-348
    • Hasegawa, H.1    Holm, L.2
  • 24
    • 0029610991 scopus 로고
    • Asparagine-linked glycosylation: Specificity and function of oligosaccharyl transferase
    • DOI 10.1016/0968-0896(95)00142-5
    • Imperiali, B., and Hendrickson, T. L. (1995) Asparagine-linked glycosylation: specificity and function of oligosaccharyl transferase. Bioorg. Med. Chem. 3, 1565-1578 (Pubitemid 26022435)
    • (1995) Bioorganic and Medicinal Chemistry , vol.3 , Issue.12 , pp. 1565-1578
    • Imperiali, B.1    Hendrickson, T.L.2
  • 25
    • 0001523706 scopus 로고
    • A mechanistic proposal for asparagine-linked glycosylation
    • Imperiali, B., Shannon, K. L., Unno, M., and Rickert, K. W. (1992) A mechanistic proposal for asparagine-linked glycosylation. J. Am. Chem. Soc. 114, 7944-7945
    • (1992) J. Am. Chem. Soc. , vol.114 , pp. 7944-7945
    • Imperiali, B.1    Shannon, K.L.2    Unno, M.3    Rickert, K.W.4
  • 26
    • 0028261414 scopus 로고
    • Enzymatic deglycosylation of asparagine-linked glycans: Purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum
    • Tarentino, A. L., and Plummer, T. H., Jr. (1994) Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 230, 44-57
    • (1994) Methods Enzymol. , vol.230 , pp. 44-57
    • Tarentino, A.L.1    Plummer Jr., T.H.2
  • 27
    • 77954288774 scopus 로고    scopus 로고
    • Dali server: Conservation mapping in 3D
    • Holm, L., and Rosenström, P. (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545-W549
    • (2010) Nucleic Acids Res. , vol.38
    • Holm, L.1    Rosenström, P.2
  • 28
    • 79957714498 scopus 로고    scopus 로고
    • Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification
    • Larsbrink, J., Izumi, A., Ibatullin, F. M., Nakhai, A., Gilbert, H. J., Davies, G. J., and Brumer, H. (2011) Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem. J. 436, 567-580
    • (2011) Biochem. J. , vol.436 , pp. 567-580
    • Larsbrink, J.1    Izumi, A.2    Ibatullin, F.M.3    Nakhai, A.4    Gilbert, H.J.5    Davies, G.J.6    Brumer, H.7
  • 29
    • 59649093199 scopus 로고    scopus 로고
    • The anhydrofructose pathway of glycogen catabolism
    • Yu, S. (2008) The anhydrofructose pathway of glycogen catabolism. IUBMB Life 60, 798-809
    • (2008) IUBMB Life , vol.60 , pp. 798-809
    • Yu, S.1
  • 30
    • 0028890556 scopus 로고
    • Multiple molecular forms of α-glucosidase from spinach seeds, Spinacia oleracea L
    • Sugimoto, M., Furui, S., and Suzuki, Y. (1995) Multiple molecular forms of α-glucosidase from spinach seeds, Spinacia oleracea L. Biosci. Biotechnol. Biochem. 59, 673-677
    • (1995) Biosci. Biotechnol. Biochem. , vol.59 , pp. 673-677
    • Sugimoto, M.1    Furui, S.2    Suzuki, Y.3
  • 33
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 34
    • 0032961270 scopus 로고    scopus 로고
    • ESPript: Analysis of multiple sequence alignments in PostScript
    • DOI 10.1093/bioinformatics/15.4.305
    • Gouet, P., Courcelle, E., Stuart, D. I., and Métoz, F. (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15, 305-308 (Pubitemid 29213756)
    • (1999) Bioinformatics , vol.15 , Issue.4 , pp. 305-308
    • Gouet, P.1    Courcelle, E.2    Stuart, D.I.3    Metoz, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.